Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music

被引:0
|
作者
Blumensath, T [1 ]
Davies, M [1 ]
机构
[1] Univ London, Dept Elect Engn, London E1 4NS, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many time-series in engineering arise from a sparse mixture of individual components. Sparse coding can be used to decompose such signals into a set of functions. Most sparse coding algorithms divide the signal into blocks. The functions learned from these blocks are, however, not independent of the temporal alignment of the blocks. We present a fast algorithm for sparse coding that does not depend on the block location. To reduce the dimensionality of the problem, a subspace selection step is used during signal decomposition. Due to this reduction an Iterative Reweighted Least Squares method can be used for the constrained optimisation. We demonstrate the algorithm's abilities by learning functions from a polyphonic piano recording. The found functions represent individual notes and a sparse signal decomposition leads to a transcription of the piano signal.
引用
收藏
页码:497 / 500
页数:4
相关论文
共 50 条
  • [21] Pooling Robust Shift-Invariant Sparse Representations of Acoustic Signals
    Huang, Po-Sen
    Yang, Jianchao
    Hasegawa-Johnson, Mark
    Liang, Feng
    Huang, Thomas S.
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2517 - 2520
  • [22] A Shift-Invariant Latent Variable Model for Automatic Music Transcription
    Benetos, Emmanouil
    Dixon, Simon
    COMPUTER MUSIC JOURNAL, 2012, 36 (04) : 81 - 94
  • [23] ON SHIFT-INVARIANT OPERATORS
    SHTEINBERG, AM
    RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (03) : 215 - 216
  • [24] SPARSE IMAGE REPRESENTATIONS WITH SHIFT-INVARIANT TREE-STRUCTURED DICTIONARIES
    Nakashizuka, Makoto
    Nishiura, Hidenari
    Iiguni, Youji
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2145 - 2148
  • [25] Improved shift-invariant sparse coding for noise attenuation of magnetotelluric data
    Guang Li
    Xiaoqiong Liu
    Jingtian Tang
    Juzhi Deng
    Shuanggui Hu
    Cong Zhou
    Chaojian Chen
    Wenwu Tang
    Earth, Planets and Space, 72
  • [26] Shift-Invariant Sparse Filtering for Bearing Weak Fault Signal Denoising
    Wang, Rui
    Ding, Xiaoxi
    He, Dong
    Li, Quangchang
    Li, Xin
    Tang, Jian
    Huang, Wenbin
    IEEE SENSORS JOURNAL, 2023, 23 (21) : 26096 - 26106
  • [27] Improved shift-invariant sparse coding for noise attenuation of magnetotelluric data
    Li, Guang
    Liu, Xiaoqiong
    Tang, Jingtian
    Deng, Juzhi
    Hu, Shuanggui
    Zhou, Cong
    Chen, Chaojian
    Tang, Wenwu
    EARTH PLANETS AND SPACE, 2020, 72 (01):
  • [28] Sparse representations of polyphonic music
    Plumbley, MD
    Abdallah, SA
    Blumensath, T
    Davies, ME
    SIGNAL PROCESSING, 2006, 86 (03) : 417 - 431
  • [29] Instrument Learning and Sparse NMD for Automatic Polyphonic Music Transcription
    Rizzi, Antonello
    Antonelli, Mario
    Luzi, Massimiliano
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (07) : 1405 - 1415
  • [30] Generalized Shift-Invariant Systems
    Amos Ron
    Zuowei Shen
    Constructive Approximation , 2005, 22 : 1 - 45