Stabilization of the Kirchhoff type wave equation with locally distributed damping

被引:7
|
作者
Kang, Yong Han [2 ]
Lee, Mi Jin [1 ]
Jung, Il Hyo [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
关键词
Wave equation; Locally damping; Energy decay; Degenerate damping; Stabilization; DECAY;
D O I
10.1016/j.aml.2008.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive energy decay estimates of the Kirchhoff type wave equation with a localized damping term in a bounded domain. The damping coefficient function may act alive only on a neighborhood of some part of the boundary. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:719 / 722
页数:4
相关论文
共 50 条
  • [41] Optimal design of the damping set for the stabilization of the wave equation
    Munch, Arnaud
    Pedregal, Pablo
    Periago, Francisco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) : 331 - 358
  • [42] Stabilization of the wave equation with internal damping and numerical simulations
    Barry, Kalifa Lassana
    Laoubi, Karima
    INTERNATIONAL JOURNAL OF CONTROL, 2025,
  • [43] Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping
    Kaïs Ammari
    Fathi Hassine
    Luc Robbiano
    Archive for Rational Mechanics and Analysis, 2020, 236 : 577 - 601
  • [44] Stabilization of the wave equation with a localized nonlinear strong damping
    Tebou, Louis
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [45] Stabilization of the wave equation with a localized nonlinear strong damping
    Louis Tebou
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [46] STABILIZATION OF THE SEMILINEAR WAVE-EQUATION WITH VISCOUS DAMPING
    LASIECKA, I
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 86 (01) : 73 - 87
  • [47] Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping
    Hajej, Ahmed
    Hajjej, Zayd
    Tebou, Louis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 290 - 308
  • [48] Exponential stability for the nonlinear Schrodinger equation with locally distributed damping
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Ozsari, Turker
    Sepulveda, Mauricio
    Vejar-Aseme, Rodrigo
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1134 - 1167
  • [49] Asymptotic behavior for a viscoelastic Kirchhoff equation with distributed delay and Balakrishnan–Taylor damping
    Abdelbaki Choucha
    Salah Boulaaras
    Boundary Value Problems, 2021
  • [50] UNIFORM DECAY RATES FOR THE WAVE EQUATION WITH NONLINEAR DAMPING LOCALLY DISTRIBUTED IN UNBOUNDED DOMAINS WITH FINITE MEASURE
    Cavalcanti, Marcelo M.
    Dias Silva, Flavio R.
    Domingos Cavalcanti, Valeria N.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 545 - 580