Identification of Giemsa Staind of Malaria Using K-Means Clustering Segmentation Technique

被引:0
|
作者
Haryanto, Edy Victor S. [1 ,2 ]
Mashor, M. Y. [2 ]
Nasir, A. S. Abdul [2 ]
Mohamed, Zeehaida [3 ]
机构
[1] Univ Potensi Utama, Fac Engn & Comp Sci, Jl KL Yos Sudarso Km 6,5 3 A, Medan 20241, Indonesia
[2] Univ Malaysia Perlis, Sch Mechatron Engn, Arau 02600, Malaysia
[3] Univ Sains Malaysia, Dept Patol Microbiol & Parasitol, Kubang Kerian 16150, Kelantan, Malaysia
关键词
Image Processing; Segmentation Technique; Giemsa Staind; Malaria; K-means Clustering Algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malaria is disease the most common in the world. The disease is caused by mosquito bites anywhere. The identification process will take some time to deliver maximum results. One of the techniques used to identification image of blood cell is segmentation, the technique used in this study is a K-Means. K-means clustering algorithm can be combined with segmentation technique to obtain the identification of malaria virus. In on this study K-Means clustering segmentation techniques capable of providing identification automation with Giemsa staining of malaria, and the results of blood that is infected will be directly identified.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [31] A Parallel Forecasting Approach Using Incremental K-means Clustering Technique
    Sahoo, Swagatika
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM 2016, 2017, 556 : 165 - 172
  • [32] A Novel Approach for Medical Image Segmentation using PCA and K-means Clustering
    Katkar, Juilee
    Baraskar, Trupti
    Mankar, Vijay R.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 430 - 435
  • [33] Breast Tumor Segmentation Using K-Means Clustering and Cuckoo Search Optimization
    Arjmand, Amir
    Meshgini, Saeed
    Afrouzian, Reza
    Farzamnia, Ali
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 305 - 308
  • [34] A medical image segmentation method using K-means clustering and rough sets
    Matsuura, T
    Kobashi, S
    Hata, Y
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 436 - 440
  • [35] Discovering Knowledge by Comparing Silhouettes Using K-Means Clustering for Customer Segmentation
    Akbar, Zeeshan
    Liu, Jun
    Latif, Zahida
    [J]. INTERNATIONAL JOURNAL OF KNOWLEDGE MANAGEMENT, 2020, 16 (03) : 70 - 88
  • [36] New algorithm for colour image segmentation using hybrid k-means clustering
    [J]. Alasadi, A.H.H. (abbashh2002@yahoo.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (04):
  • [37] Segmentation of Breast Ultrasound Image Using Regularized K-Means (ReKM) Clustering
    Samundeeswari, E. S.
    Saranya, P. K.
    Manavalan, R.
    [J]. PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 1379 - 1383
  • [38] Medical image segmentation using K-MEANS clustering and improved watershed algorithm
    Ng, H. P.
    Ong, S. H.
    Foong, K. W. C.
    Goh, P. S.
    Nowinski, W. L.
    [J]. 7TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2006, : 61 - +
  • [39] Customer segmentation using k-means clustering for developing sustainable marketing strategies
    Gautam, Nidhi
    Kumar, Nitin
    [J]. BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2022, 16 (01): : 72 - 82
  • [40] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893