Identification of Giemsa Staind of Malaria Using K-Means Clustering Segmentation Technique

被引:0
|
作者
Haryanto, Edy Victor S. [1 ,2 ]
Mashor, M. Y. [2 ]
Nasir, A. S. Abdul [2 ]
Mohamed, Zeehaida [3 ]
机构
[1] Univ Potensi Utama, Fac Engn & Comp Sci, Jl KL Yos Sudarso Km 6,5 3 A, Medan 20241, Indonesia
[2] Univ Malaysia Perlis, Sch Mechatron Engn, Arau 02600, Malaysia
[3] Univ Sains Malaysia, Dept Patol Microbiol & Parasitol, Kubang Kerian 16150, Kelantan, Malaysia
关键词
Image Processing; Segmentation Technique; Giemsa Staind; Malaria; K-means Clustering Algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malaria is disease the most common in the world. The disease is caused by mosquito bites anywhere. The identification process will take some time to deliver maximum results. One of the techniques used to identification image of blood cell is segmentation, the technique used in this study is a K-Means. K-means clustering algorithm can be combined with segmentation technique to obtain the identification of malaria virus. In on this study K-Means clustering segmentation techniques capable of providing identification automation with Giemsa staining of malaria, and the results of blood that is infected will be directly identified.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [1] Customer Segmentation using K-means Clustering
    Kansal, Tushar
    Bahuguna, Suraj
    Singh, Vishal
    Choudhury, Tanupriya
    [J]. PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 135 - 139
  • [2] Infected Fruit Part Detection using K-Means Clustering Segmentation Technique
    Dubey, Shiv Ram
    Dixit, Pushkar
    Singh, Nishant
    Gupta, Jay Prakash
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2013, 2 (02): : 65 - 72
  • [3] Segmentation Based Approach for Detection of Malaria Parasites Using Moving K-Means Clustering
    Nasir, A. S. Abdul
    Mashor, M. Y.
    Mohamed, Z.
    [J]. 2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [4] Explainable Customer Segmentation Using K-means Clustering
    Khan, Riyo Hayat
    Dofadar, Dibyo Fabian
    Alam, Md Golam Rabiul
    [J]. 2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 639 - 643
  • [5] Cauliflower Disease Identification Using Image Segmentation Based On Pso K-Means Clustering
    Manjutha, M.
    Selvakumari, Sheela
    [J]. INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2022, 12 : 26 - 32
  • [6] Image segmentation using transition region and K-means clustering
    Rosyadi, Ahmad Wahyu
    Suciati, Nanik
    [J]. IAENG International Journal of Computer Science, 2020, 47 (01): : 47 - 55
  • [7] Automatic Segmentation of Ovarian Follicle using K-means Clustering
    Kiruthika, V
    Ramya, M. M.
    [J]. 2014 FIFTH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2014), 2014, : 137 - 141
  • [8] Segmentation of peen forming patterns using k-means clustering
    Sushitskii, Vladislav
    Miao, Hong Yan
    Levesque, Martin
    Gosselin, Frederick P.
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 : 867 - 877
  • [9] Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN
    Altini, Nicola
    De Giosa, Giuseppe
    Fragasso, Nicola
    Coscia, Claudia
    Sibilano, Elena
    Prencipe, Berardino
    Hussain, Sardar Mehboob
    Brunetti, Antonio
    Buongiorno, Domenico
    Guerriero, Andrea
    Tato, Ilaria Sabina
    Brunetti, Gioacchino
    Triggiani, Vito
    Bevilacqua, Vitoantonio
    [J]. INFORMATICS-BASEL, 2021, 8 (02):
  • [10] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771