Interpolation and Best Approximation for Spherical Radial Basis Function Networks

被引:0
|
作者
Lin, Shaobo [1 ]
Zeng, Jinshan [1 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Inst Informat & Syst Sci, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SCATTERED-DATA INTERPOLATION; SPHERES; SPACES; KERNELS;
D O I
10.1155/2013/206265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the conventional framework of a native space structure, a smooth kernel generates a small native space, and radial basis functions stemming from the smooth kernel are intended to approximate only functions from this small native space. In this paper, we embed the smooth radial basis functions in a larger native space generated by a less smooth kernel and use them to interpolate the samples. Our result shows that there exists a linear combination of spherical radial basis functions that can both exactly interpolate samples generated by functions in the larger native space and near best approximate the target function.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On the universal approximation property of radial basis function neural networks
    Ismayilova, Aysu
    Ismayilov, Muhammad
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2024, 92 (03) : 691 - 701
  • [22] GPS orbit approximation using radial basis function networks
    Preseren, Polona Pavlovcic
    Stopar, Bojan
    COMPUTERS & GEOSCIENCES, 2009, 35 (07) : 1389 - 1396
  • [23] Approximation of nonlinear systems with radial basis function neural networks
    Schilling, RJ
    Carroll, JJ
    Al-Ajlouni, AF
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01): : 1 - 15
  • [24] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [25] Image interpolation for progressive transmission by using radial basis function networks
    Sigitani, T
    Iiguni, Y
    Maeda, H
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 381 - 390
  • [26] Radial basis function interpolation surface
    Yin, Baocai
    Gao, Wen
    Journal of Computer Science and Technology, 1998, 13 (Suppl): : 63 - 68
  • [27] A radial basis function interpolation surface
    Yin, BC
    Gao, W
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 391 - 394
  • [28] New enhanced methods for radial basis function neural networks in function approximation
    Fatemi, M. (mefatemi@gmail.com), Operador Nacional do Sistema Eletrico - ONS; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Inst. of Elec. and Elec. Eng. Computer Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States):
  • [29] Local volatility function approximation using reconstructed radial basis function networks
    Kim, Bo-Hyun
    Lee, Daewon
    Lee, Jaewook
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 3, PROCEEDINGS, 2006, 3973 : 524 - 530
  • [30] New enhanced methods for radial basis function neural networks in function approximation
    Fatemi, M
    Roopaei, M
    Shabaninia, F
    HIS 2005: 5th International Conference on Hybrid Intelligent Systems, Proceedings, 2005, : 524 - 527