Design IIR digital filters using Quantum-behaved Particle Swarm Optimization

被引:0
|
作者
Fang, Wei [1 ]
Sun, Jun [1 ]
Xu, Wenbo [1 ]
机构
[1] So Yangtze Univ, Sch Informat Technol, Ctr Intelligent & High Performance Comp, Wuxi 214122, Jiangsu, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Design IIR digital filters with arbitrary specified frequency is a multi-parameter optimization problem. In this paper, we employ our proposed method, Quantum-behaved Particle Swarm Optimization (QPSO), to solve the IIR digital filters design problem. QPSO, which is inspired by the fundamental theory of Particle Swarm Optimization and quantum mechanics, is a global convergent stochastic searching technique. The merits of the proposed method such as global convergent, robustness and rapid convergence are demonstrated by the experiment results on the low-pass and band-pass IIR filters.
引用
收藏
页码:637 / 640
页数:4
相关论文
共 50 条
  • [31] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Yang, Jie
    Xie, Jiahua
    [J]. 2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 159 - 162
  • [32] Quantum-behaved Particle Swarm Optimization clustering algorithm
    Sun, Jun
    Xu, Wenbo
    Ye, Bin
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 340 - 347
  • [33] Quantum-behaved Particle Swarm Optimization with mutation operator
    Liu, J
    Xu, WB
    Sun, J
    [J]. ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 237 - 240
  • [34] Parameter selection of quantum-behaved Particle Swarm Optimization
    Sun, J
    Xu, WB
    Liu, J
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 543 - 552
  • [35] An improved cooperative quantum-behaved particle swarm optimization
    Li, Yangyang
    Xiang, Rongrong
    Jiao, Licheng
    Liu, Ruochen
    [J]. SOFT COMPUTING, 2012, 16 (06) : 1061 - 1069
  • [36] An improved cooperative quantum-behaved particle swarm optimization
    Yangyang Li
    Rongrong Xiang
    Licheng Jiao
    Ruochen Liu
    [J]. Soft Computing, 2012, 16 : 1061 - 1069
  • [37] A Modified Quantum-Behaved Particle Swarm Optimization for Constrained Optimization
    Liu, Huaying
    Xu, Shaohua
    Liang, Xingzhu
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, : 531 - +
  • [38] Using Quantum-Behaved Particle Swarm Optimization for Portfolio Selection Problem
    Farzi, Saeed
    Shavazi, Alireza Rayati
    Pandari, Abbas
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2013, 10 (02) : 111 - 119
  • [39] Solving combinatorial optimization problem using Quantum-Behaved Particle Swarm Optimization
    Tian, Na
    Sun, Jun
    Xu, Wenbo
    [J]. DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 491 - 493
  • [40] Quantum-behaved particle swarm optimization using Q-Learning
    Sheng, Xinyi
    Sun, Jun
    Xu, Wenbo
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 3965 - 3971