On the edge-forwarding indices of Frobenius graphs

被引:4
|
作者
Wang, Yan [1 ]
Fang, Xin Gui
Hsu, D. F.
机构
[1] Yantai Univ, Dept Math, Yantai 264005, Peoples R China
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[3] Peking Univ, LMAM, Beijing 100871, Peoples R China
[4] Fordham Univ, Dept Comp & Informat Sci, New York, NY 10023 USA
[5] Rutgers State Univ, DIMACS Ctr, Piscataway, NJ 08854 USA
关键词
Frobenius graph; networks; edge-forwarding index;
D O I
10.1007/s10114-005-0833-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A G-Frobenius graph Gamma, as defined by Fang, Li, and Praeger, is a connected orbital graph of a Frobenius group G = K x H with Frobenius kernel K and Frobenius complement H. Gamma is also shown to be a Cayley graph, Gamma = Cay(K, S) for K and some subset S of the group K. On the other hand, a network N with a routing function R, written as (N,R), is an undirected graph N together with a routing R which consists of a collection of simple paths connecting every pair of vertices in the graph. The edge-forwarding index pi(N) of a network (N,R), defined by Heydemann, Meyer, and Sotteau, is a parameter to describe the maximum load of edges of N. In this paper, we study the edge-forwarding indices of Frobenius graphs. In particular, we obtain the edge-forwarding index of a G-Frobenius graph Gamma with rank(G) <= 50.
引用
收藏
页码:1735 / 1744
页数:10
相关论文
共 50 条
  • [11] Calculating the edge Wiener and edge Szeged indices of graphs
    Yousefi-Azari, H.
    Khalifeh, M. H.
    Ashrafi, A. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4866 - 4870
  • [12] EDGE-ZAGREB INDICES OF GRAPHS
    Yamac, C.
    Oz, M. S.
    Cangul, I. N.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 1 - 10
  • [13] Normal edge-transitive Cayley graphs of Frobenius groups
    Corr, Brian P.
    Praeger, Cheryl E.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 803 - 827
  • [14] Normal edge-transitive Cayley graphs of Frobenius groups
    Brian P. Corr
    Cheryl E. Praeger
    Journal of Algebraic Combinatorics, 2015, 42 : 803 - 827
  • [15] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Lei Wang
    Yin Liu
    Yanxiong Yan
    Journal of Algebraic Combinatorics, 2021, 53 : 527 - 551
  • [16] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Wang, Lei
    Liu, Yin
    Yan, Yanxiong
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 527 - 551
  • [17] RELATIONSHIP BETWEEN EDGE SZEGED AND EDGE WIENER INDICES OF GRAPHS
    Nadjafi-Arani, Mohammad Javad
    Khodashenas, Hasan
    Ashrafi, Ali Reza
    GLASNIK MATEMATICKI, 2012, 47 (01) : 21 - 29
  • [18] Some Indices Of Edge Corona Of Two Graphs
    Abdolhosseinzadeh, Irandokht Rezaee
    Rahbarnia, Freydoon
    Tavakoli, Mostafa
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 13 - 24
  • [19] Computation of the edge Wiener indices of the sum of graphs
    Azari, Mahdieh
    Iranmanesh, Ali
    ARS COMBINATORIA, 2011, 100 : 113 - 128
  • [20] Revised and edge revised Szeged indices of graphs
    Faghani, Morteza
    Ashrafi, Ali Reza
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 153 - 160