An energy-dependent electro-thermal response model of CUORE cryogenic calorimeter

被引:2
|
作者
Adams, D. Q. [1 ]
Alduino, C. [1 ]
Alfonso, K. [2 ,11 ]
Avignone, F. T., III [1 ]
Azzolini, O. [3 ]
Bari, G. [4 ]
Bellini, F. [5 ,6 ]
Benato, G. [7 ]
Beretta, M. [8 ]
Biassoni, M. [9 ]
Branca, A. [9 ,10 ]
Brofferio, C. [9 ,10 ]
Bucci, C. [7 ]
Camilleri, J. [11 ]
Caminata, A. [12 ]
Campani, A. [12 ,13 ]
Canonica, L. [7 ,14 ]
Cao, X. G. [15 ]
Capelli, S. [9 ,10 ]
Capelli, C. [16 ]
Cappelli, L. [7 ]
Cardani, L. [6 ]
Carniti, P. [9 ,10 ]
Casali, N. [6 ]
Celi, E. [7 ,17 ]
Chiesa, D. [9 ,10 ]
Clemenza, M. [9 ]
Copello, S. [12 ,13 ]
Cremonesi, O. [9 ]
Creswick, R. J. [1 ]
Dafinei, I [6 ]
Del Corso, F. [4 ,18 ]
Dell'Orso, S. [9 ,10 ]
Di Domizio, S. [12 ,13 ]
Di Lorenzo, S. [7 ]
Dompe, V [5 ,6 ]
Fang, D. Q. [15 ]
Fantini, G. [5 ,6 ]
Faverzani, M. [9 ,10 ]
Ferri, E. [9 ]
Ferroni, F. [6 ,17 ]
Fiorini, E. [9 ,10 ]
Franceschi, M. A. [19 ]
Freedman, S. J. [8 ,16 ]
Fu, S. H. [15 ]
Fujikawa, B. K. [16 ]
Ghislandi, S. [7 ,17 ]
Giachero, A. [9 ,10 ]
Gianvecchio, A. [10 ]
Gironi, L. [9 ,10 ]
机构
[1] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy
[4] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[5] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy
[6] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[7] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy
[8] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[9] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy
[10] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy
[11] Virginia Polytech Inst & State Univ, Ctr Neutrino Phys, Blacksburg, VA 24061 USA
[12] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[13] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[14] MIT, Cambridge, MA 02139 USA
[15] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat, MOE, Shanghai 200433, Peoples R China
[16] Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA
[17] Gran Sasso Sci Inst, I-67100 Laquila, Italy
[18] Alma Mater Studiorum Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[19] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy
[20] Univ Paris Saclay, IJCLab, CNRS IN2P3, F-91405 Orsay, France
[21] Calif Polytech State Univ San Luis Obispo, Phys Dept, San Luis Obispo, CA 93407 USA
[22] Shanghai Jiao Tong Univ, INPAC, Shanghai Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China
[23] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China
[24] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
[25] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21211 USA
[26] Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France
[27] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[28] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
[29] Univ Cassino & Lazio Merid, Dipartimento Ingn Civile & Meccan, I-03043 Cassino, Italy
[30] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy
[31] Lawrence Berkeley Natl Lab, Engn Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
Cryogenic detectors; Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter etc); Double-beta decay detectors; TRANSMUTATION-DOPED GERMANIUM; DOUBLE-BETA DECAY; HOPPING CONDUCTION; NOISE; HEAT; GE; OPTIMIZATION; SENSITIVITY; SILICON;
D O I
10.1088/1748-0221/17/11/P11023
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 nu beta beta) in (130) Te. CUORE uses a cryogenic array of 988 TeO2 calorimeters operated at similar to 10mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] An electro-thermal HBV model
    Ingvarson, M
    Vukusic, J
    Olsen, AO
    Emadi, TA
    Stake, J
    2005 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-4, 2005, : 1151 - 1153
  • [2] Electro-thermal model of an optical transmitter
    Karray, M
    Desgreys, P
    Charlot, JJ
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 751 - 753
  • [3] Research on the energy distribution of micro EDM by utilization of electro-thermal model
    Wang, Kan
    Zhang, Qinhe
    Zhu, Guang
    Liu, Qingyu
    Huang, Yuhua
    Zhang, Jianhua
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (9-12): : 4179 - 4186
  • [4] Research on the energy distribution of micro EDM by utilization of electro-thermal model
    Kan Wang
    Qinhe Zhang
    Guang Zhu
    Qingyu Liu
    Yuhua Huang
    Jianhua Zhang
    The International Journal of Advanced Manufacturing Technology, 2017, 93 : 4179 - 4186
  • [5] Electro-thermal Comprehensive Demand Response Based on Multi-energy Complementarity
    Xu H.
    Dong S.
    He Z.
    Shi Y.
    Wang L.
    Liu Y.
    Dianwang Jishu/Power System Technology, 2019, 43 (02): : 480 - 487
  • [6] Model Order Reduction of an Electro-Thermal Package Model
    Banagaaya, N.
    Feng, L.
    Meuris, P.
    Schoenmaker, W.
    Benner, P.
    IFAC PAPERSONLINE, 2015, 48 (01): : 934 - +
  • [7] ENERGY-DEPENDENT MODEL PSEUDOPOTENTIAL
    SO, CB
    WANG, S
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1977, 7 (01): : 35 - 46
  • [8] A Fast Inverter Model for Electro-Thermal Simulation
    Gragger, Johannes V.
    Fenz, Claus J.
    Kernstock, Harald
    Kral, Christian
    2012 TWENTY-SEVENTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 2012, : 2548 - 2555
  • [9] Electro-thermal Model for Thyristor for HVDC Valve
    Yang Jun
    Zhang Jing
    Cao Jun-zheng
    Zha Kun-peng
    Wei Xiao-guang
    2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2012,
  • [10] Development of Electro-Thermal Model of LED in the Multisim
    Bespalov, Nikolai. N.
    Kapitonov, Sergei. S.
    Zorkin, Alexander. V.
    Volkov, Alexander. G.
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 1453 - 1456