Sub-Gaussian bound for the one-dimensional Bouchaud trap model

被引:2
|
作者
Cabezas, Manuel [1 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, Rio De Janeiro, Brazil
关键词
Bouchaud trap model; FIN diffusion; Ray-Knight Theorem; RANDOM ENERGY-MODEL; GLAUBER DYNAMICS; SCALING LIMITS; AGING REGIMES; Z(D);
D O I
10.1214/13-BJPS231
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a sub-Gaussian lower bound for the transition kernel of the one-dimensional, symmetric Bouchaud trap model, which provides a positive answer to the behavior predicted by Bertin and Bouchaud in (Phys. Rev. E (3) 67 (2013) 026128). The proof rests on the Ray Knight description of the local time of a one-dimensional Brownian motion. Using the same ideas, we also prove the corresponding result for the FIN singular diffusion.
引用
收藏
页码:112 / 131
页数:20
相关论文
共 50 条
  • [21] Linear and nonlinear response in the aging regime of the one-dimensional trap model
    Bertin, EM
    Bouchaud, JP
    PHYSICAL REVIEW E, 2003, 67 (06):
  • [22] Sub-Gaussian Model Based LDPC Decoder for SαS Noise Channels
    Topor, Iulian
    Chitre, Mandar
    Motani, Mehul
    OCEANS, 2012 - YEOSU, 2012,
  • [23] Composite-boson formalism applied to strongly bound fermion pairs in a one-dimensional trap
    Jimenez, Martin D.
    Cuestas, Eloisa
    Majtey, Ana P.
    Cormick, Cecilia
    SCIPOST PHYSICS CORE, 2023, 6 (01):
  • [24] Bose gases in one-dimensional harmonic trap
    Hou, Ji-Xuan
    Yang, Jing
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (04):
  • [25] One-dimensional rydberg gas in a magnetoelectric trap
    Mayle, Michael
    Hezel, Bernd
    Lesanovsky, Igor
    Schmelcher, Peter
    PHYSICAL REVIEW LETTERS, 2007, 99 (11)
  • [26] Boson pairs in a one-dimensional split trap
    Murphy, D. S.
    McCann, J. F.
    Goold, J.
    Busch, Th.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [27] TRAP CONTROLLED HOPPING IN ONE-DIMENSIONAL SYSTEMS
    PRIGODIN, VN
    SEIDEL, C
    NAKHMEDOV, AP
    SOLID STATE COMMUNICATIONS, 1985, 53 (05) : 451 - 455
  • [28] Dynamic response of one-dimensional bosons in a trap
    Golovach, Vitaly N.
    Minguzzi, Anna
    Glazman, Leonid I.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [29] Inhomogeneity of a one-dimensional Yukawa system in a trap
    Nikolaev, V. S.
    Timofeev, A. V.
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [30] Bose gases in one-dimensional harmonic trap
    JI-XUAN HOU
    JING YANG
    Pramana, 2016, 87