Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO2|TiO2 Core|Shell Nanostructures

被引:10
|
作者
Bangle, Rachel E. [1 ]
Mortelliti, Michael J. [1 ]
Troian-Gautier, Ludovic [1 ]
Dempsey, Jillian L. [1 ]
Meyer, Gerald J. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 45期
基金
美国国家科学基金会;
关键词
ATOMIC LAYER DEPOSITION; RAMAN SPECTRAL CHARACTERIZATION; CHARGE RECOMBINATION; SOLAR-CELLS; NANOCRYSTALLINE TIO2; X-RAY; PHASE-TRANSFORMATION; TRANSFER DYNAMICS; RUTILE TIO2; SNO2;
D O I
10.1021/acs.jpcc.0c08200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism for interfacial electron transfer (ET) from a metal oxide core vertical bar shell nanostructure to a [Ru-III(2,2'-bipyridine)(2)(4,4'-(PO3H2)(2)-2,2'-bipyridine)](3+) sensitizer was probed through spectroscopic quantification of the ET kinetics over a 70 degrees C temperature range in an aqueous 0.1 M HClO4 solution. Mesoporous thin films of rutile SnO2 or insulating ZrO2 nanocrystals were coated through atomic layer deposition (ALD) with TiO2 shells of variable thickness to comprise the core vertical bar shell nanostructures. In agreement with previous research, Raman spectroscopy and transmission electron microscopy provided evidence that annealing the mesoporous SnO2 vertical bar TiO2 materials at 450 degrees C resulted in rutile TiO2 shells. Materials heated to only 200 degrees C, termed "unannealed", exhibited no evidence of crystallinity. Annealed and unannealed materials resulted in dissimilar interfacial ET kinetics. While temperature-independent kinetics indicated that ET occurred through tunneling in the thickest unannealed shells, materials with annealed shells underwent thermally activated ET. Further, thermally activated ET and tunneling competed in materials with unannealed shells less than 50 ALD-cycles thick. Arrhenius analysis of the thermally activated ET revealed large barriers, consistent with slow ET reactions for SnO2 vertical bar TiO2 relative to SnO2 or TiO2 alone. Barriers were factors of 3-4 larger for unannealed SnO2 vertical bar TiO2 materials than those observed upon annealing. Eyring analysis revealed that Gibbs free energies of activation were largely insensitive to heat treatment, Delta G double dagger = 47 +/- 3 kJ mol(-1), and that ET was entropically favored for unannealed SnO2 vertical bar TiO2 and entropically costly for annealed materials. A model is proposed wherein ET in annealed SnO2 vertical bar TiO2 is rate-limited by electron transport in the shell, while ET in unannealed SnO2 vertical bar TiO2 is rate-limited by electron escape from the core. The model is consistent with a comparative study of ZrO2 vertical bar TiO2 materials for which insulating ZrO2 cores are energetically inaccessible to electrons. These mechanistic insights provide guidance on how to manipulate core vertical bar shell nanostructures for applications in solar water splitting.
引用
收藏
页码:25148 / 25159
页数:12
相关论文
共 50 条
  • [21] 3D bicontinuous SnO2/TiO2 core/shell structures for highly efficient organic dye-sensitized solar cell electrodes
    Cho, Chang-Yeol
    Baek, Sujin
    Kim, Kiwon
    Moon, Jun Hyuk
    [J]. RSC ADVANCES, 2016, 6 (78): : 74003 - 74008
  • [22] On the possibility of ferromagnetism and improved dye-sensitized solar cells efficiency in TiO2/ZnO core/shell nanostructures
    Rajamanickam, N.
    Kanmani, S. S.
    Jayakumar, K.
    Ramachandran, K.
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 378 : 192 - 200
  • [23] Barriers for interfacial back-electron transfer: A comparison between TiO2 and SnO2/TiO2 core/shell structures
    Troian-Gautier, Ludovic
    Sampaio, Renato N.
    Piechota, Eric J.
    Brady, Matthew D.
    Meyer, Gerald J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04):
  • [24] A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells
    Gao, Caitian
    Li, Xiaodong
    Lu, Bingan
    Chen, Lulu
    Wang, Youqing
    Teng, Feng
    Wang, Jiangtao
    Zhang, Zhenxing
    Pan, Xiaojun
    Xie, Erqing
    [J]. NANOSCALE, 2012, 4 (11) : 3475 - 3481
  • [25] Incorporation of TiO2 Nanoparticles Into SnO2 Nanofibers for Higher Efficiency Dye-Sensitized Solar Cells
    Kasaudhan, Ravi
    Elbohy, Hytham
    Sigdel, Sudhan
    Qiao, Hui
    Wei, Qufu
    Qiao, Qiquan
    [J]. IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) : 578 - 580
  • [26] Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells
    Tiwana, Priti
    Docampo, Pablo
    Johnston, Michael B.
    Snaith, Henry J.
    Herz, Laura M.
    [J]. ACS NANO, 2011, 5 (06) : 5158 - 5166
  • [27] Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells:: Zn-O type shell on SnO2 and TiO2 cores
    Park, NG
    Kang, MG
    Kim, KM
    Ryu, KS
    Chang, SH
    Kim, DK
    van de Lagemaat, J
    Benkstein, KD
    Frank, AJ
    [J]. LANGMUIR, 2004, 20 (10) : 4246 - 4253
  • [28] Iodide electron transfer kinetics in dye-sensitized nanocrystalline TiO2 films
    Montanari, I
    Nelson, J
    Durrant, JR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (47): : 12203 - 12210
  • [29] Photoinduced Electron Transfer in Dye-Sensitized SnO2 Nanowire Field-Effect Transistors
    Wu, Hsing-Chen
    Huang, Yuan-Chang
    Ding, I-Kang
    Chen, Chun-Cing
    Yang, Yi-Han
    Tsai, Chia-Chang
    Chen, Chii-Dong
    Chen, Yit-Tsong
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (03) : 474 - 479
  • [30] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
    Xie, Dongmei
    Tang, Xiaowen
    Lin, Yuan
    Ma, Pin
    Zhou, Xiaowen
    [J]. CHINESE PHYSICS B, 2018, 27 (01)