Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO2|TiO2 Core|Shell Nanostructures

被引:10
|
作者
Bangle, Rachel E. [1 ]
Mortelliti, Michael J. [1 ]
Troian-Gautier, Ludovic [1 ]
Dempsey, Jillian L. [1 ]
Meyer, Gerald J. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 45期
基金
美国国家科学基金会;
关键词
ATOMIC LAYER DEPOSITION; RAMAN SPECTRAL CHARACTERIZATION; CHARGE RECOMBINATION; SOLAR-CELLS; NANOCRYSTALLINE TIO2; X-RAY; PHASE-TRANSFORMATION; TRANSFER DYNAMICS; RUTILE TIO2; SNO2;
D O I
10.1021/acs.jpcc.0c08200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism for interfacial electron transfer (ET) from a metal oxide core vertical bar shell nanostructure to a [Ru-III(2,2'-bipyridine)(2)(4,4'-(PO3H2)(2)-2,2'-bipyridine)](3+) sensitizer was probed through spectroscopic quantification of the ET kinetics over a 70 degrees C temperature range in an aqueous 0.1 M HClO4 solution. Mesoporous thin films of rutile SnO2 or insulating ZrO2 nanocrystals were coated through atomic layer deposition (ALD) with TiO2 shells of variable thickness to comprise the core vertical bar shell nanostructures. In agreement with previous research, Raman spectroscopy and transmission electron microscopy provided evidence that annealing the mesoporous SnO2 vertical bar TiO2 materials at 450 degrees C resulted in rutile TiO2 shells. Materials heated to only 200 degrees C, termed "unannealed", exhibited no evidence of crystallinity. Annealed and unannealed materials resulted in dissimilar interfacial ET kinetics. While temperature-independent kinetics indicated that ET occurred through tunneling in the thickest unannealed shells, materials with annealed shells underwent thermally activated ET. Further, thermally activated ET and tunneling competed in materials with unannealed shells less than 50 ALD-cycles thick. Arrhenius analysis of the thermally activated ET revealed large barriers, consistent with slow ET reactions for SnO2 vertical bar TiO2 relative to SnO2 or TiO2 alone. Barriers were factors of 3-4 larger for unannealed SnO2 vertical bar TiO2 materials than those observed upon annealing. Eyring analysis revealed that Gibbs free energies of activation were largely insensitive to heat treatment, Delta G double dagger = 47 +/- 3 kJ mol(-1), and that ET was entropically favored for unannealed SnO2 vertical bar TiO2 and entropically costly for annealed materials. A model is proposed wherein ET in annealed SnO2 vertical bar TiO2 is rate-limited by electron transport in the shell, while ET in unannealed SnO2 vertical bar TiO2 is rate-limited by electron escape from the core. The model is consistent with a comparative study of ZrO2 vertical bar TiO2 materials for which insulating ZrO2 cores are energetically inaccessible to electrons. These mechanistic insights provide guidance on how to manipulate core vertical bar shell nanostructures for applications in solar water splitting.
引用
收藏
页码:25148 / 25159
页数:12
相关论文
共 50 条
  • [1] Electron Transfer Dynamics at Dye-Sensitized SnO2/TiO2 Core/Shell Electrodes in Aqueous/Nonaqueous Electrolyte Mixtures
    Xiao, Langqiu
    Spies, Jacob A.
    Sheehan, Colton J.
    Zeng, Zichen
    Gao, Yunhan
    Gao, Tianyue
    Ehrlacher, Annika
    Zuerch, Michael W.
    Brudvig, Gary W.
    Mallouk, Thomas E.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (26) : 18117 - 18127
  • [2] Ultrafast recombination dynamics in dye-sensitized SnO2/TiO2 core/shell films
    Gish, Melissa
    Brennaman, M.
    Lapides, Alexander
    Templeton, Joseph
    Meyer, Thomas
    Papanikolas, John
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Ultrafast Recombination Dynamics in Dye-Sensitized SnO2/TiO2 Core/Shell Films
    Gish, Melissa K.
    Lapides, Alexander M.
    Brennaman, M. Kyle
    Templeton, Joseph L.
    Meyer, Thomas J.
    Papanikolas, John M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24): : 5297 - 5301
  • [4] Electron localization and transport through ruthenium polypyridyl dye-sensitized core/shell SnO2/TiO2 mesoporous thin films
    James, Erica
    Bennett, Marc
    Meyer, Gerald
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [5] Dynamics of Electron Injection in Sno2/Tio2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells
    McCool, Nicholas S.
    Swierk, John R.
    Nemes, Coleen T.
    Schmuttenmaer, Charles A.
    Mallouk, Thomas E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (15): : 2930 - 2934
  • [6] Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells
    Tai, WP
    Inoue, K
    Oh, JH
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 71 (04) : 553 - 557
  • [7] Composite electrode SnO2/TiO2 for dye-sensitized solar cells
    Bin Xia, J
    Li, FY
    Yang, SM
    Huang, CH
    [J]. CHINESE CHEMICAL LETTERS, 2004, 15 (05) : 619 - 622
  • [8] Composite Electrode SnO2/TiO2 for Dye-Sensitized Solar Cells
    Jiang Bin XIA
    [J]. Chinese Chemical Letters, 2004, (05) : 619 - 622
  • [9] Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO2 and SnO2
    Kavan, Ladislav
    Zivcova, Zuzana Vlckova
    Zlamalova, Magda
    Zakeeruddin, Shaik M.
    Graetzel, Michael
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12): : 6512 - 6521
  • [10] TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells
    Cai, Fengshi
    Yuan, Zhihao
    Duan, Yueqing
    Bie, Lijian
    [J]. THIN SOLID FILMS, 2011, 519 (16) : 5645 - 5648