On the sojourn time distribution in a finite population Markovian processor sharing queue

被引:0
|
作者
Zhen, Qiang [1 ]
van Leeuwaarden, Johan S. H. [2 ,3 ]
Knessl, Charles [4 ]
机构
[1] Univ North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USA
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] EURANDOM, POB 513, NL-5600 MB Eindhoven, Netherlands
[4] Univ Illinois, Dept Math Stat & Comp Sci, 851 South Morgan,M-C 249, Chicago, IL 60607 USA
关键词
finite population; processor sharing; asymptotics; RESPONSE-TIME; WAITING-TIME; ASYMPTOTIC EXPANSIONS; SYSTEMS;
D O I
10.1093/imamat/hxw006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a finite population processor sharing (PS) queue, with Markovian arrivals and an exponential server. Such a queue can model an interactive computer system consisting of a bank of terminals in series with a central processing unit. For systems with a large population N and a commensurately rapid service rate, or infrequent arrivals, we obtain various asymptotic results. We analyse the conditional sojourn time distribution of a tagged customer, conditioned on the number n of others in the system at the tagged customer's arrival instant, and also the unconditional distribution. The asymptotics are obtained by a combination of singular perturbation methods and spectral methods. We consider several space/time scales and parameter ranges, which lead to different asymptotic behaviours. We also identify precisely when the finite population model can be approximated by the standard infinite population M/M/1 - nPS queue.
引用
收藏
页码:33 / 59
页数:27
相关论文
共 50 条
  • [21] Sojourn time in an M/M/1 processor sharing queue with permanent customers
    Guillemin, Fabrice
    Slim, Farah
    [J]. STOCHASTIC MODELS, 2018, 34 (01) : 115 - 137
  • [22] Sojourn times in a processor sharing queue with multiple vacations
    Ayesta, U.
    Boxma, O. J.
    Verloop, I. M.
    [J]. QUEUEING SYSTEMS, 2012, 71 (1-2) : 53 - 78
  • [23] Sojourn times in a processor sharing queue with multiple vacations
    U. Ayesta
    O. J. Boxma
    I. M. Verloop
    [J]. Queueing Systems, 2012, 71 : 53 - 78
  • [24] CONDITIONAL SOJOURN TIME MOMENTS IN THE FINITE-CAPACITY GI/M/1 QUEUE WITH PROCESSOR-SHARING SERVICE
    YANG, YZ
    KNESSL, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) : 1132 - 1193
  • [25] Sojourn times in the M/PH/1 processor sharing queue
    Sericola, B
    Guillemin, F
    Boyer, J
    [J]. QUEUEING SYSTEMS, 2005, 50 (01) : 109 - 130
  • [26] Sojourn Times in the M/PH/1 Processor Sharing Queue
    Bruno Sericola
    Fabrice Guillemin
    Jacqueline Boyer
    [J]. Queueing Systems, 2005, 50 : 109 - 130
  • [27] CONCAVITY OF THE CONDITIONAL MEAN SOJOURN TIME IN THE PROCESSOR-SHARING QUEUE WITH BATCH ARRIVALS
    Kim, Jeongsim
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (06) : 1251 - 1258
  • [28] Sojourn time distribution in polling systems with processor-sharing policy
    Kim, Bara
    Kim, Jeongsim
    [J]. PERFORMANCE EVALUATION, 2017, 114 : 97 - 112
  • [29] Asymptotic analysis of the sojourn time of a batch in a M[X]/M/1 processor sharing queue
    Guillemin, Fabrice
    Simonian, Alain
    Nasri, Ridha
    Rodriguez, Veronica Quintuna
    [J]. STOCHASTIC MODELS, 2024, 40 (04) : 659 - 684
  • [30] On the sojourn of an arbitrary customer in an M/M/1 Processor Sharing Queue
    Guillemin, Fabrice
    Rodriguez, Veronica Quintuna
    [J]. STOCHASTIC MODELS, 2020, 36 (03) : 378 - 400