Disorder in twisted bilayer graphene

被引:63
|
作者
Wilson, Justin H. [1 ]
Fu, Yixing [1 ]
Das Sarma, S. [2 ,3 ]
Pixley, J. H. [1 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
MAGIC-ANGLE;
D O I
10.1103/PhysRevResearch.2.023325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a theory for a type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat-band moire superlattice. The paradigm of "twist-angle disorder" arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable nonuniformity of the twist angle across the sample. To address this physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist-angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Strain fields in twisted bilayer graphene
    Nathanael P. Kazmierczak
    Madeline Van Winkle
    Colin Ophus
    Karen C. Bustillo
    Stephen Carr
    Hamish G. Brown
    Jim Ciston
    Takashi Taniguchi
    Kenji Watanabe
    D. Kwabena Bediako
    [J]. Nature Materials, 2021, 20 : 956 - 963
  • [22] Moire phonons in twisted bilayer graphene
    Koshino, Mikito
    Son, Young-Woo
    [J]. PHYSICAL REVIEW B, 2019, 100 (07)
  • [23] Helical dislocation in twisted bilayer graphene
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    [J]. EXTREME MECHANICS LETTERS, 2023, 63
  • [24] Kondo phase in twisted bilayer graphene
    Zhou, Geng-Dong
    Wang, Yi-Jie
    Tong, Ninghua
    Song, Zhi-Da
    [J]. PHYSICAL REVIEW B, 2024, 109 (04)
  • [25] Twisted Bilayer Graphene: Moire with a Twist
    Dai, Shuyang
    Xiang, Yang
    Srolovitz, David J.
    [J]. NANO LETTERS, 2016, 16 (09) : 5923 - 5927
  • [26] Electronic structure of twisted bilayer graphene
    Wu Jiang-Bin
    Zhang Xin
    Tan Ping-Heng
    Feng Zhi-Hong
    Li Jia
    [J]. ACTA PHYSICA SINICA, 2013, 62 (15)
  • [27] Kondo effect in twisted bilayer graphene
    Shankar, A. S.
    Oriekhov, D. O.
    Mitchell, Andrew K.
    Fritz, L.
    [J]. PHYSICAL REVIEW B, 2023, 107 (24)
  • [28] Kondo effect in twisted bilayer graphene
    Shankar, A. S.
    Oriekhov, D. O.
    Mitchell, Andrew K.
    Fritz, L.
    [J]. PHYSICAL REVIEW B, 2023, 107 (23)
  • [29] Raman bands of twisted bilayer graphene
    Popov, Valentin N.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (01) : 31 - 35
  • [30] Ferroelectricity in twisted double bilayer graphene
    Du, Renjun
    Xiao, Jingkuan
    Zhang, Di
    Cai, Xiaofan
    Jiang, Siqi
    Lian, Fuzhuo
    Watanabe, Kenji
    Taniguchi, Takashi
    Wang, Lei
    Yu, Geliang
    [J]. 2D MATERIALS, 2024, 11 (02)