Weyl modules and q-Whittaker functions

被引:0
|
作者
Braverman, Alexander [1 ]
Finkelberg, Michael [2 ,3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] IITP, IMU, Dept Math, Moscow 101000, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia
关键词
MACDONALD POLYNOMIALS; DEMAZURE MODULES;
D O I
10.1007/s00208-013-0985-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semi-simple simply connected group over C. Following Gerasimov et al. (CommMath Phys 294: 97-119, 2010) we use the q-Toda integrable system obtained by quantum group version of the Kostant-Whittaker reduction (cf. Etingof in Am Math Soc Trans Ser 2: 9-25, 1999, Sevostyanov in CommunMath Phys 204: 116, 1999) to define the notion of q-Whittaker functions Psi(lambda boolean OR)(q, z). This is a family of invariant polynomials on the maximal torus T subset of G (here z is an element of T) depending on a dominant weight lambda(boolean OR) of G whose coefficients are rational functions in a variable q is an element of C*. For a conjecturally the same (but a priori different) definition of the q-Toda system these functions were studied by Ion (Duke Math J 116: 299-318, 2003) and by Cherednik (Int Math Res Notices 20: 3793-3842, 2009) [ we shall denote the qWhittaker functions from Cherednik (Int Math Res Notices 20: 3793-3842, 2009) by Psi(lambda boolean OR)' (q, z)]. For G = SL(N) these functions were extensively studied in Gerasimov et al. (Comm Math Phys 294: 97-119, 2010; Comm Math Phys 294: 121-143, 2010; Lett Math Phys 97: 1-24, 2010). We show that when G is simply laced, the function (Psi) over cap (lambda boolean OR) (q, z) = Psi(lambda boolean OR)(q, z) . Pi(i is an element of I) Pi((alpha i, lambda boolean OR))(r=1) (1 - q(r)) (here I denotes the set of vertices of the Dynkin diagram of G) is equal to the character of a certain finite-dimensional G[[t]] X C*-module D(lambda(boolean OR)) (the Demazure module). When G is not simply laced a twisted version of the above statement holds. This result is known for Psi(lambda boolean OR) replaced by Psi(lambda boolean OR)' (cf. Sanderson in J Algebraic Combin 11: 269-275, 2000 and Ion in Duke Math J 116: 299-318, 2003); however our proofs are algebro-geometric [and rely on our previous work (Braverman, Finkelberg in Semi-infinite Schubert varieties and quantum K-theory of flag manifolds, arXiv/1111.2266, 2011)] and thus they are completely different from Sanderson (J Algebraic Combin 11: 269-275, 2000) and Ion (Duke Math J 116: 299-318, 2003) [in particular, we give an apparently new algebro-geometric interpretation of the modules D(lambda boolean OR())].
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [21] Deformation of Weyl modules and generalized parking functions
    Feigin, B
    Loktev, S
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (51) : 2719 - 2750
  • [22] On a Classical Limit of q-Deformed Whittaker Functions
    Anton Gerasimov
    Dimitri Lebedev
    Sergey Oblezin
    Letters in Mathematical Physics, 2012, 100 : 279 - 290
  • [23] On a Classical Limit of q-Deformed Whittaker Functions
    Gerasimov, Anton
    Lebedev, Dimitri
    Oblezin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (03) : 279 - 290
  • [24] On Weyl modules of cyclotomic q-Schur algebras
    Wada, Kentaro
    ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2012, 565 : 261 - 286
  • [25] WHITTAKER CATEGORIES AND WHITTAKER MODULES FOR LIE SUPERALGEBRAS
    Bagci, Irfan
    Christodoulopoulou, Konstantina
    Wiesner, Emilie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4932 - 4947
  • [26] ON MODULES INDUCED FROM WHITTAKER MODULES
    MCDOWELL, E
    JOURNAL OF ALGEBRA, 1985, 96 (01) : 161 - 177
  • [27] Multi-Dimensional Weyl Modules and Symmetric Functions
    B. Feigin
    S. Loktev
    Communications in Mathematical Physics, 2004, 251 : 427 - 445
  • [28] Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras
    Christodoulopoulou, Konstantina
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 2871 - 2890
  • [29] Multi-dimensional Weyl modules and symmetric functions
    Feigin, B
    Loktev, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (03) : 427 - 445
  • [30] Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra e(3)
    Cai, Yan-an
    Shen, Ran
    Zhang, Jiangang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1419 - 1433