Visualizing rheological mechanism of magnetorheological fluids

被引:2
|
作者
Shen, Yurui [1 ]
Hua, Dezheng [1 ]
Liu, Xinhua [1 ,2 ]
Li, Weihua [3 ]
Krolczyk, Grzegorz [4 ]
Li, Zhixiong [5 ]
机构
[1] China Univ Min & Technol, Sch Mechatron Engn, Xuzhou, Jiangsu, Peoples R China
[2] Technol & Innovat Res Ctr JiangYan EDZ, Taizhou, Peoples R China
[3] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Keiraville, NSW 2522, Australia
[4] Opole Univ Technol, Fac Mech Engn, PL-45758 Opole, Poland
[5] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
基金
中国国家自然科学基金;
关键词
aqueous magnetorheological fluids; rheological properties; fluorescence confocal laser scanning microscope; time series image; ROTATIONAL-DYNAMICS; SUSPENSIONS; SIMULATIONS; PARTICLES; BEHAVIOR; DESIGN;
D O I
10.1088/1361-665X/ac411d
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Thermogelling magnetorheological fluids
    Shahrivar, Keshvad
    de Vicente, Juan
    [J]. SMART MATERIALS AND STRUCTURES, 2014, 23 (02)
  • [43] Inverse magnetorheological fluids
    Rodriguez-Arco, L.
    Lopez-Lopez, M. T.
    Zubarev, A. Y.
    Gdula, K.
    Duran, J. D. G.
    [J]. SOFT MATTER, 2014, 10 (33) : 6256 - 6265
  • [44] Behavior of Magnetorheological Fluids
    John M. Ginder
    [J]. MRS Bulletin, 1998, 23 : 26 - 29
  • [45] ABRASION OF MAGNETORHEOLOGICAL FLUIDS
    Jenis, F.
    Roupec, J.
    Zacek, J.
    Kubik, M.
    Machacek, O.
    Smilka, J.
    Smilkova, M.
    Mazurek, I
    [J]. ENGINEERING MECHANICS 2019, 2019, 25 : 169 - 172
  • [46] Flow of magnetorheological fluids
    Lange, U
    Richter, L
    Zipser, L
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2001, 12 (03) : 161 - 164
  • [47] Mechanism analysis of the carrier viscosity effect on shear stress of magnetorheological fluids
    Zhuang, Yang
    Li, Haitao
    Song, Shangwei
    Peng, Xianghe
    [J]. SOFT MATTER, 2022, 18 (35) : 6592 - 6598
  • [48] Magnetorheological fluids and their properties
    He, JM
    Huang, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (1-3): : 593 - 596
  • [49] Compressible Magnetorheological Fluids
    Fuchs, Alan
    Rashid, Abu
    Liu, Yanming
    Kavlicoglu, Barkan
    Sahin, Huseyin
    Gordaninejad, Faramarz
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 115 (06) : 3348 - 3356
  • [50] Ferrofluids and Magnetorheological Fluids
    Vekas, Ladislau
    [J]. SMART MATERIALS & MICRO/NANOSYSTEMS, 2009, 54 : 127 - 136