A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis

被引:93
|
作者
Rihan, F. A. [1 ]
Rahman, D. H. Abdel [1 ]
Lakshmanan, S. [1 ]
Alkhajeh, A. S. [2 ]
机构
[1] UAE Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[2] UAE Univ, Coll Sci, Dept Biol, Al Ain 15551, U Arab Emirates
关键词
DDEs; Hopf bifurcation; Immune cells; Parameter estimation; Sensitivity; Stability; Tumour cells; MATHEMATICAL-MODELS; HOPF-BIFURCATION; CANCER; GROWTH; IMMUNOTHERAPY; COMPETITION; BIOLOGY;
D O I
10.1016/j.amc.2014.01.111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. In this paper, we present a delay differential model to describe the interactions between the effector and tumour cells. The existence of the possible steady states and their local stability and change of stability via Hopf bifurcation are theoretically and numerically investigated. Parameter estimation problem for given real observations, using least squares approach, is studied. The global stability and sensitivity analysis are also numerically proved for the model. The stability and periodicity of the solutions may depend on the time-lag parameter. The model is qualitatively consistent with the experimental observations of immune-induced tumour dormancy. The model also predicts dormancy as a transient period of growth which necessarily results in either tumour elimination or tumour escape. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:606 / 623
页数:18
相关论文
共 50 条
  • [41] A Global Sensitivity Analysis of Parameter Uncertainty in the CLASSIC Model
    Deepak, Raj S. N.
    Seiler, Christian
    Monahan, Adam H.
    ATMOSPHERE-OCEAN, 2024, 62 (05) : 347 - 359
  • [42] Parameter selection for model updating with global sensitivity analysis
    Yuan, Zhaoxu
    Liang, Peng
    Silva, Tiago
    Yu, Kaiping
    Mottershead, John E.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 115 : 483 - 496
  • [43] Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions
    Huber, Nica
    Bugmann, Harald
    Lafond, Valentine
    ECOLOGICAL MODELLING, 2018, 368 : 377 - 390
  • [44] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 (25-33) : 25 - 33
  • [45] Bayesian Parameter Estimation for Nonlinear Dynamics Using Sensitivity Analysis
    Chou, Yi
    Sankaranarayanan, Sriram
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5708 - 5714
  • [46] Model discrimination and parameter estimation through sensitivity analysis
    Sales-Cruz, Mauricio
    Gani, Rafiqul
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 625 - 631
  • [47] Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model
    Varella, Hubert
    Guerif, Martine
    Buis, Samuel
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (03) : 310 - 319
  • [48] Role of Sensitivity Analysis in Load Model Parameter Estimation
    Mitra, Parag
    Vittal, Vijay
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [49] Parameter estimation and global sensitivity analysis of a bacterial-plasmid model with impulsive drug treatment
    Jia, Jing
    Zhao, Zhong
    Yang, Jingen
    Zeb, Anwar
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [50] Population dynamics of a parasite and hyperparasite in a closed system: Model analysis and parameter estimation
    Gubbins, S
    Gilligan, CA
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1373) : 1071 - 1078