On the geometry of wave solutions of a delayed reaction-diffusion equation

被引:25
|
作者
Trofimchuk, Elena [2 ]
Alvarado, Pedro [1 ]
Trofimchuk, Sergei [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
[2] Natl Tech Univ, Dept Differential Equat, Kiev, Ukraine
关键词
Time-delayed reaction-diffusion equation; Heteroclinic solutions; Non-monotone positive travelling fronts; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISCRETE POPULATION-MODELS; TRAVELING-WAVES; GLOBAL STABILITY; ASYMPTOTIC-BEHAVIOR; INTEGRAL-EQUATIONS; FRONTS; SPEEDS; PROPAGATION; SYSTEMS;
D O I
10.1016/j.jde.2008.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the existence and the geometry of positive bounded wave solutions to a non-local delayed reaction-diffusion equation of the monostable type. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1422 / 1444
页数:23
相关论文
共 50 条
  • [1] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773
  • [2] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773
  • [3] Wave solutions for a discrete reaction-diffusion equation
    Carpio, A
    Chapman, SJ
    Hastings, S
    McLeod, JB
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 : 399 - 412
  • [4] DYNAMICS OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION WITH DELAYED INHIBITION
    Touaoula, Tarik Mohammed
    Frioui, Mohammed Nor
    Bessonov, Nikolay
    Volpert, Vitaly
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (09): : 2425 - 2442
  • [5] A reaction-diffusion equation and its traveling wave solutions
    Feng, Zhaosheng
    Chen, Goong
    Meng, Qingguo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (06) : 634 - 639
  • [6] Travelling wave solutions for delayed lattice reaction-diffusion systems
    Hsu, Cheng-Hsiung
    Lin, Jian-Jhong
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (02) : 302 - 323
  • [7] Uniqueness of traveling wave solutions for a biological reaction-diffusion equation
    Huang, WZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 42 - 59
  • [8] On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation
    Jordanov, Ivan P.
    Vitanov, Nikolay K.
    ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS (BGSIAM 2017), 2019, 793 : 199 - 210
  • [9] Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity
    Wang, Qi-Ru
    Zhou, Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2549 - 2562
  • [10] ASYMMETRIC SOLUTIONS OF THE REACTION-DIFFUSION EQUATION
    NANDAKUMAR, K
    WEINITSCHKE, HJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917): : 39 - 58