DYNAMICS OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION WITH DELAYED INHIBITION

被引:11
|
作者
Touaoula, Tarik Mohammed [1 ]
Frioui, Mohammed Nor [1 ]
Bessonov, Nikolay [2 ]
Volpert, Vitaly [3 ,4 ,5 ,6 ]
机构
[1] Univ Abou Bekr Belkaid Tlemcen, Lab Anal Non Lineaire & Math Appl, Dept Math, Tilimsen 13000, Algeria
[2] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[3] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia
[4] Univ Lyon 1, Inst Camille Jordan, UMR 5208 CNRS, F-69622 Villeurbanne, France
[5] Univ Lyon 1, INRIA, Univ Lyon, Inst Camille Jordan, 43 Bd 11 Novembre 1918, F-69200 Villeurbanne, France
[6] RAS, Marchuk Inst Numer Math, Ul Gubkina 8, Moscow 119333, Russia
来源
基金
俄罗斯科学基金会;
关键词
Delay reaction-diffusion equation; global attractor; pattern formation; FUNCTIONAL-DIFFERENTIAL EQUATIONS; GLOBAL STABILITY-CRITERION; NICHOLSONS BLOWFLIES; DIRICHLET PROBLEM; SYSTEMS; MODEL;
D O I
10.3934/dcdss.2020193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reaction-diffusion equation with a logistic production term and a delayed inhibition term is studied. Global stability of the homogeneous in space equilibrium is proved under some conditions on the delay term. In the case where these conditions are not satisfied, this solution can become unstable resulting in the emergence of spatiotemporal pattern formation studied in numerical simulations.
引用
收藏
页码:2425 / 2442
页数:18
相关论文
共 50 条
  • [1] Dynamics of a reaction-diffusion equation with nonlocal inhibition
    Raquepas, JB
    Dockery, JD
    [J]. PHYSICA D, 1999, 134 (01): : 94 - 110
  • [2] On the geometry of wave solutions of a delayed reaction-diffusion equation
    Trofimchuk, Elena
    Alvarado, Pedro
    Trofimchuk, Sergei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) : 1422 - 1444
  • [3] Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
    Hu, Wenjie
    Duan, Yueliang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [4] ASYMMETRIC SOLUTIONS OF THE REACTION-DIFFUSION EQUATION
    NANDAKUMAR, K
    WEINITSCHKE, HJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917): : 39 - 58
  • [5] DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION
    Ge, Zhihao
    [J]. MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (05): : 762 - 767
  • [6] Entire solutions of delayed reaction-diffusion equations
    Lv, Guangying
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (03): : 204 - 216
  • [7] Dynamics of Fractional Delayed Reaction-Diffusion Equations
    Liu, Linfang
    Nieto, Juan J.
    [J]. ENTROPY, 2023, 25 (06)
  • [8] ETERNAL SOLUTIONS FOR A REACTION-DIFFUSION EQUATION WITH WEIGHTED REACTION
    Iagar, Razvan Gabriel
    Sanchez, Ariel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (03): : 1465 - 1491
  • [9] LAYERED SOLUTIONS TO A BISTABLE REACTION-DIFFUSION EQUATION
    CHEN, B
    FLORES, G
    SHIH, SD
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) : 217 - 244
  • [10] Exact and Explicit Solutions for A Reaction-diffusion Equation
    Tian, Baodan
    Qiu, Yanhong
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 279 - 282