Traffic Signal Control Based on Adaptive Neuro-Fuzzy Inference

被引:0
|
作者
Wannige, C. T. [1 ]
Sonnadara, D. U. J. [1 ]
机构
[1] Univ Colombo, Dept Phys, Colombo 3, Sri Lanka
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive neuro-fuzzy inference system is developed and tested for traffic signal controlling. From a given input data set, the developed adaptive neuro-fuzzy inference system can draw the membership functions and corresponding rules by its own, thus making the designing process easier and reliable compared to standard fuzzy, logic controllers. Among useful inputs of fuzzy signal control systems, gap between two vehicles, delay at intersections vehicle density, flow rate and queue length are often used. By considering the practical applicability, the average vehicle inflow rate of each lane is considered in this work as inputs to model the adaptive neuro-fuzzy signal control system. In order to define the desired objectives of reducing the waiting time of vehicles at the signal control, the combined delay of vehicles within one signal cycle is minimized using a simple mathematical optimization method The performance of the control system was tested further by developing an event driven traffic simulation program in Matlab under Windows environment. As expected, the neuro-fuzzy logic controller performed better than the fixed time controller due to its real time adaptability. The neuro-fuzzy controlling system allows more vehicles to pass the junction in congestion and less number of vehicles when the flow, rate is low. In particular, the performance of the developed system was superior when there were abrupt changes in traffic flow rates. This is especially very much useful for Sri Lankan roads due to increasing frequency of sudden changes in traffic patterns caused by closure of roads for short time intervals to accommodate security issues.
引用
收藏
页码:327 / +
页数:2
相关论文
共 50 条
  • [41] Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles
    Kurnaz, Sefer
    Cetin, Omer
    Kaynak, Okyay
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1229 - 1234
  • [42] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [43] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [44] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    [J]. Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [45] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    [J]. VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [46] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    [J]. RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [47] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [48] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    [J]. FERROELECTRICS, 2008, 372 : 54 - 65
  • [49] Application of Adaptive Neuro-Fuzzy Inference Systems for Analyzing non-Gaussian Signal
    Chabaa, S.
    Zeroual, A.
    Antari, J.
    [J]. 2009 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS 2009), 2009, : 377 - 380
  • [50] Adaptive neuro-fuzzy inference system for volt/var control in distribution systems
    Ramakrishna, G
    Rao, ND
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 1999, 49 (02) : 87 - 97