Efficient Data Structures for Range Shortest Unique Substring Queries

被引:3
|
作者
Abedin, Paniz [1 ]
Ganguly, Arnab [2 ]
Pissis, Solon P. [3 ,4 ]
Thankachan, Sharma V. [1 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA
[2] Univ Wisconsin, Dept Comp Sci, Whitewater, WI 53190 USA
[3] CWI, Life Sci & Hlth, NL-1098 XG Amsterdam, Netherlands
[4] Vrije Univ, Ctr Integrat Bioinformat, NL-1081 HV Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
shortest unique substring; suffix tree; heavy-light decomposition; range queries; geometric data structures; ALGORITHMS;
D O I
10.3390/a13110276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let T[1, n] be a string of length n and T[i, j] be the substring of T starting at position i and ending at position j. A substring T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is a unique substring of T. Repeats and unique substrings are of great interest in computational biology and information retrieval. Given string T as input, the Shortest Unique Substring problem is to find a shortest substring of T that does not occur elsewhere in T. In this paper, we introduce the range variant of this problem, which we call the Range Shortest Unique Substring problem. The task is to construct a data structure over T answering the following type of online queries efficiently. Given a range [alpha, beta], return a shortest substring T[i, j] of T with exactly one occurrence in [alpha, beta]. We present an O(n log n)-word data structure with O(log(w) n) query time, where w = Omega(log n) is the word size. Our construction is based on a non-trivial reduction allowing for us to apply a recently introduced optimal geometric data structure [Chan et al., ICALP 2018]. Additionally, we present an O(n)-word data structure with O(root n log(c) n) query time, where epsilon > 0 is an arbitrarily small constant. The latter data structure relies heavily on another geometric data structure [Nekrich and Navarro, SWAT 2012].
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] In-place algorithms for exact and approximate shortest unique substring problems
    Hon, Wing-Kai
    Thankachan, Sharma V.
    Xu, Bojian
    THEORETICAL COMPUTER SCIENCE, 2017, 690 : 12 - 25
  • [22] More Time-Space Tradeoffs for Finding a Shortest Unique Substring
    Bannai, Hideo
    Gagie, Travis
    Hoppenworth, Gary
    Puglisi, Simon J.
    Russo, Luis M. S.
    ALGORITHMS, 2020, 13 (09)
  • [23] Data structures for range-aggregate extent queries
    Gupta, Prosenjit
    Janardan, Ravi
    Kumar, Yokesh
    Smid, Michiel
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02): : 329 - 347
  • [24] NEW DATA-STRUCTURES FOR ORTHOGONAL RANGE QUERIES
    WILLARD, DE
    SIAM JOURNAL ON COMPUTING, 1985, 14 (01) : 232 - 253
  • [25] Data Structures for Range Minimum Queries in Multidimensional Arrays
    Yuan, Hao
    Atallah, Mikhail J.
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 150 - 160
  • [26] Bundling Linked Data Structures for Linearizable Range Queries
    Nelson-Slivon, Jacob
    Hassan, Ahmed
    Palmieri, Roberto
    PPOPP'22: PROCEEDINGS OF THE 27TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2022, : 368 - 384
  • [27] Efficient external memory structures for range-aggregate queries
    Agarwal, Pankaj K.
    Arge, Lars
    Govindarajan, Sathish
    Yang, Jun
    Yi, Ke
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (03): : 358 - 370
  • [28] FastGeo: Efficient Geometric Range Queries on Encrypted Spatial Data
    Wang, Boyang
    Li, Ming
    Xiong, Li
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2019, 16 (02) : 245 - 258
  • [29] Efficient techniques for range search queries on earth science data
    Shi, QM
    JaJa, JF
    14TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2002, : 142 - 151
  • [30] Efficient Algorithms for Range Mode Queries in the Big Data Era
    Karras, Christos
    Theodorakopoulos, Leonidas
    Karras, Aristeidis
    Krimpas, George A.
    INFORMATION, 2024, 15 (08)