Robust State Estimation of Fractional-order Complex Networks with Parametric Uncertainties

被引:0
|
作者
Chen Aimin [1 ,2 ]
Wang Xingwang [3 ]
Wang Junwei [4 ]
Liu Zhiguang [1 ,2 ]
Zhang Fengpan [1 ,2 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Henan Univ, Construct Dept BASIC, Kaifeng 475004, Peoples R China
[4] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
State Estimation; Fractional-order Derivative; Complex Networks; Parametric Uncertainty; Scalar Signals; SYNCHRONIZATION; SYSTEMS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the robust state estimation problem of a class of uncertain fractional-order complex networks with norm-bounded parameter uncertainties. Through available scalar output signals, our aim is to design a state estimator to estimate the network states such that the estimation error is globally robustly asymptotically stable for all admissible parameter uncertainties. Based on the stability theory of fractional-order differential systems, a sufficient condition for the existence of the desired estimator gain is derived, and then the explicit expression of such estimator gain is characterized in terms of the solution to linear matrix inequalities. Finally, simulation examples are provided to show the effectiveness of the designed estimator.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [31] Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties
    Chen, Liping
    Wu, Ranchao
    He, Yigang
    Yin, Lisheng
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 274 - 284
  • [32] Robust Stability Analysis of Fractional-Order Linear Systems with Polytopic Uncertainties
    Yang, Jing
    Hou, Xiaorong
    PROCEEDINGS OF ICRCA 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION / ICRMV 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND MACHINE VISION, 2018, : 47 - 51
  • [33] Asymptotic synchronization of fractional-order non-identical complex dynamical networks with parameter uncertainties
    Aadhithiyan, Subramaniyan
    Raja, Ramachandran
    Kou, Bo
    Selvam, Govindaraj
    Niezabitowski, Michal
    Lim, Chee Peng
    Cao, Jinde
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [34] Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties
    Song, Qiankun
    Chen, Yanxi
    Zhao, Zhenjiang
    Liu, Yurong
    Alsaadi, Fuad E.
    NEUROCOMPUTING, 2021, 420 : 70 - 81
  • [35] Robust Interval Observer Design for Fractional-Order Models with Applications to State Estimation of Batteries
    Hildebrandt, Erik
    Kersten, Julia
    Rauh, Andreas
    Aschemann, Harald
    IFAC PAPERSONLINE, 2020, 53 (02): : 3683 - 3688
  • [36] Fractional-Order Robust Control Design under parametric uncertain approach
    Martins-Gomes, Marcus C.
    Ayres Junior, Florindo A. de C.
    da Costa Junior, Carlos T.
    de Bessa, Iury V.
    Farias, Nei Junior da S.
    de Medeiros, Renan L. P.
    Silva, Luiz E. S.
    Lucena Junior, Vicente F. de
    ISA TRANSACTIONS, 2024, 153 : 420 - 432
  • [37] Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays
    Fan, Hongguang
    Zhu, Jihong
    Wen, Hui
    AIMS MATHEMATICS, 2022, 7 (07): : 12981 - 12999
  • [38] Pinning control of fractional-order weighted complex networks
    Tang, Yang
    Wang, Zidong
    Fang, Jian-an
    CHAOS, 2009, 19 (01)
  • [39] Cluster synchronization in fractional-order complex dynamical networks
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Sun, Jian
    Ma, Tiedong
    PHYSICS LETTERS A, 2012, 376 (35) : 2381 - 2388
  • [40] Hybrid synchronization of coupled fractional-order complex networks
    Ma, Tiedong
    Zhang, Jun
    NEUROCOMPUTING, 2015, 157 : 166 - 172