Predictors of firearm violence in urban communities: A machine-learning approach

被引:47
|
作者
Goin, Dana E. [1 ]
Rudolph, Kara E. [1 ,2 ]
Ahern, Jennifer [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol, Berkeley, CA 94720 USA
[2] Univ Calif Davis, Sch Med, Dept Emergency Med, Sacramento, CA 95817 USA
基金
美国国家卫生研究院;
关键词
INCOME INEQUALITY; EXPOSURE; CRIME; HEALTH; OUTCOMES; TEMPERATURE; SEGREGATION; RATES;
D O I
10.1016/j.healthplace.2018.02.013
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Interpersonal firearm violence is a leading cause of death and injuries in the United States. Identifying community characteristics associated with firearm violence is important to improve confounder selection and control in health research, to better understand community-level factors that are associated with firearm violence, and to enhance community surveillance and control of firearm violence. The objective of this research was to use machine learning to identify an optimal set of predictors for urban interpersonal firearm violence rates using a broad set of community characteristics. The final list of 18 predictive covariates explain 77.8% of the variance in firearm violence rates, and are publicly available, facilitating their inclusion in analyses relating violence and health. This list includes the black isolation and segregation indices, rates of educational attainment, marital status, indicators of wealth and poverty, longitude, latitude, and temperature.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 50 条
  • [1] A novel machine-learning tool to identify community risk for firearm violence: The Firearm Violence Vulnerability Index
    Polcari, Ann M.
    Hoefer, Lea E.
    Zakrison, Tanya L.
    Cone, Jennifer T.
    Henry, Marion C. W.
    Rogers, Selwyn O.
    Slidell, Mark B.
    Benjamin, Andrew J.
    [J]. JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2023, 95 (01): : 128 - 136
  • [2] Classifying the traffic state of urban expressways: A machine-learning approach
    Cheng, Zeyang
    Wang, Wei
    Lu, Jian
    Xing, Xue
    [J]. TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2020, 137 : 411 - 428
  • [3] Well-being trajectories in breast cancer and their predictors: A machine-learning approach
    Karademas, Evangelos C.
    Mylona, Eugenia
    Mazzocco, Ketti
    Pat-Horenczyk, Ruth
    Sousa, Berta
    Oliveira-Maia, Albino J.
    Oliveira, Jose
    Roziner, Ilan
    Stamatakos, Georgios
    Cardoso, Fatima
    Kondylakis, Haridimos
    Kolokotroni, Eleni
    Kourou, Konstantina
    Lemos, Raquel
    Manica, Isabel
    Manikis, George
    Marzorati, Chiara
    Mattson, Johanna
    Travado, Luzia
    Tziraki-Segal, Chariklia
    Fotiadis, Dimitris
    Poikonen-Saksela, Paula
    Simos, Panagiotis
    BOUNCE Consortium
    [J]. PSYCHO-ONCOLOGY, 2023, 32 (11) : 1762 - 1770
  • [4] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [5] A Machine-Learning Based Approach for Zoning Urban Area in Consolidation Schemes Context
    El Ouadi, Jihane
    Errousso, Hanae
    Benhadou, Siham
    Medromi, Hicham
    Malhene, Nicolas
    [J]. LOGISTIQUA2020: 2020 IEEE 13TH INTERNATIONAL COLLOQUIUM OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT (LOGISTIQUA 2020), 2020,
  • [6] Theory Identity: A Machine-Learning Approach
    Larsen, Kai R.
    Hovorka, Dirk
    West, Jevin
    Birt, James
    Pfaff, James R.
    Chambers, Trevor W.
    Sampedro, Zebula R.
    Zager, Nick
    Vanstone, Bruce
    [J]. 2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 4639 - 4648
  • [7] Predictors of death and heart transplantation in biopsy-proven myocarditis: a machine-learning approach
    Caforio, A.
    Lorenzoni, G.
    Cheng, C. Y.
    Baritussio, A.
    Marcolongo, D.
    Brunetti, M.
    Vacirca, F.
    Fachin, F.
    Tarantini, G.
    Basso, C.
    Iliceto, S.
    Marcolongo, R.
    Gregori, D.
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 : 2064 - 2064
  • [8] Predictors of cognitive heterogeneity in a transcultural sample of individuals with bipolar disorder: A machine-learning approach
    Ponte, F.
    Czepielewski, L. S.
    Lima, F. M.
    Martinez-Aran, A.
    Kapczinski, F.
    Vieta, E.
    Rosa, A. R.
    Kunz, M.
    [J]. BIPOLAR DISORDERS, 2019, 21 : 75 - 76
  • [10] Multicontextual Machine-Learning Approach to Modeling Traffic Impact of Urban Highway Work Zones
    Bae, Junseo
    Choi, Kunhee
    Oh, Jeong Ho
    [J]. TRANSPORTATION RESEARCH RECORD, 2017, (2645) : 184 - 194