Protein ontology on the semantic web for knowledge discovery

被引:10
|
作者
Chen, Chuming [1 ]
Huang, Hongzhan [1 ]
Ross, Karen E. [2 ]
Cowart, Julie E. [1 ]
Arighi, Cecilia N. [1 ]
Wu, Cathy H. [1 ,2 ]
Natale, Darren A. [2 ]
机构
[1] Univ Delaware, Dept Comp & Informat Sci, Newark, DC 19716 USA
[2] Georgetown Univ, Med Ctr, Prot Informat Resource, Dept Biochem & Mol & Cellular Biol, Washington, DC 20007 USA
关键词
REPRESENTATION;
D O I
10.1038/s41597-020-00679-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Protein Ontology (PRO) provides an ontological representation of protein-related entities, ranging from protein families to proteoforms to complexes. Protein Ontology Linked Open Data (LOD) exposes, shares, and connects knowledge about protein-related entities on the Semantic Web using Resource Description Framework (RDF), thus enabling integration with other Linked Open Data for biological knowledge discovery. For example, proteins (or variants thereof) can be retrieved on the basis of specific disease associations. As a community resource, we strive to follow the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, disseminate regular updates of our data, support multiple methods for accessing, querying and downloading data in various formats, and provide documentation both for scientists and programmers. PRO Linked Open Data can be browsed via faceted browser interface and queried using SPARQL via YASGUI. RDF data dumps are also available for download. Additionally, we developed RESTful APIs to support programmatic data access. We also provide W3C HCLS specification compliant metadata description for our data. The PRO Linked Open Data is available at https://lod.proconsortium.org/.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Web Knowledge Discovery Trends: From Semantic Annotation to Semantic Apis
    Dotsika, Fefie
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTELLECTUAL CAPITAL, KNOWLEDGE MANAGEMENT & ORGANISATIONAL LEARNING, 2009, : 312 - 318
  • [22] Ontology and the Semantic Web
    Macgregor, George
    [J]. LIBRARY REVIEW, 2009, 58 (02) : 141 - +
  • [23] Automatic Knowledge Discovery and Semantic Annotation for Web Services
    Lin, Szu-Yin
    Chung, Chia-Chen
    Hu, Wei-Che
    Hung, Chihli
    [J]. 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2015, : 371 - 376
  • [24] Semantic Web Service Based Geospatial Knowledge Discovery
    Zhao, Peisheng
    Di, Liping
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3490 - 3493
  • [25] A pattern language for Knowledge discovery in a Semantic Web Context
    Adda, Mehdi
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2010, 5 (02) : 16 - 31
  • [26] Improving Semantic Web Service Discovery Method Based on QoS Ontology
    Farzi, Pourya
    Akbari, Reza
    Bushehrian, Omid
    [J]. 2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 72 - 76
  • [27] Knowledge Representation and Semantic Inference of Process Based on Ontology and Semantic Web Rule Language
    Zhu Haihua
    Li Jing
    Wang Yingcong
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (01) : 72 - 80
  • [28] Fuzzy ontology models and framework for fuzzy knowledge modeling on Semantic Web
    Zhai, Jun
    Xu, Song
    Shen, Lixin
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 988 - 991
  • [29] Semantic Web in data mining and knowledge discovery: A comprehensive survey
    Ristoski, Petar
    Paulheim, Heiko
    [J]. JOURNAL OF WEB SEMANTICS, 2016, 36 : 1 - 22
  • [30] Information retrieval and knowledge discovery utilising a biomedical Semantic Web
    Mukherjea, S
    [J]. BRIEFINGS IN BIOINFORMATICS, 2005, 6 (03) : 252 - 262