Experimental investigation on R134a vapour ejector refrigeration system

被引:133
|
作者
Selvaraju, A. [1 ]
Mani, A. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Refrigerat & Airconditioning Lab, Madras 600036, Tamil Nadu, India
关键词
refrigeration system; ejector system; R134a; experiment; performance;
D O I
10.1016/j.ijrefrig.2006.01.004
中图分类号
O414.1 [热力学];
学科分类号
摘要
The experimental investigation of the performance of a vapour ejector refrigeration system is described. The system uses R134a as working fluid and has a rated cooling capacity of 0.5 kW. The influence of generator, evaporator and condenser temperatures on the system performance is studied. This kind of system can be operated with low grade thermal energy such as solar energy, waste heat, etc. The operating conditions are chosen accordingly as, generator temperature between 338 K and 363 K, condenser temperature between 299 K and 310.5 K, and evaporator temperature between 275 K and 285.5 K. Six configurations of ejectors of different geometrical dimensions are selected for the parametric study. The performance of the refrigeration system at different operating temperatures is presented. (c) 2006 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1160 / 1166
页数:7
相关论文
共 50 条
  • [21] Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant
    Zegenhagen, M. T.
    Ziegler, F.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2015, 56 : 173 - 185
  • [22] Experimental Analysis of the Vapour Compression Refrigeration System with Microchannel Condenser using R134a and R1234yf Refrigerant
    Prakash, K. B.
    Subramanian, C.
    Chandrasekaran, M.
    Kalidasan, B.
    Amarkarthik, A.
    Manojkumar, P.
    Saravanakumar, S.
    JOURNAL OF ENGINEERING RESEARCH, 2021, 9
  • [23] Experimental investigation of the influence of thermoelectric subcooler on the performance of R134a refrigeration systems
    Wantha, Channarong
    APPLIED THERMAL ENGINEERING, 2020, 180
  • [24] Experimental study on key geometric parameters of an R134A ejector cooling system
    Yan, Jia
    Lin, Chen
    Cai, Wenjian
    Chen, Haoran
    Wang, Hao
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 67 : 102 - 108
  • [25] Usage of R513A as an alternative to R134a in a refrigeration system: An experimental investigation based on the Kigali amendment
    Dağıdır K.
    Bilen K.
    International Journal of Thermofluids, 2024, 21
  • [26] COMPARATIVE EXERGY ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING R134A AND R290
    Soni, Shubham
    Ali, Mohammad
    Chandra, P. Sharat
    Khare, Ashutosh
    Jain, Abhi
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 20 (01): : 113 - 121
  • [27] An experimental investigation of ejector employed a dual-evaporator vapor compression refrigeration system under various entrainment ratios using R134a as the refrigerant
    Direk, Mehmet
    Iskan, Umit
    Tunckal, Cueneyt
    Mert, Mehmet Selcuk
    Yuksel, Fikret
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [28] An experimental investigation of ejector employed a dual-evaporator vapor compression refrigeration system under various entrainment ratios using R134a as the refrigerant
    Direk, Mehmet
    İşkan, Ümit
    Tunçkal, Cüneyt
    Mert, Mehmet Selçuk
    Yüksel, Fikret
    Sustainable Energy Technologies and Assessments, 2022, 52
  • [29] Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a
    Prasad, Uma Shankar
    Mishra, Radhey Shyam
    Das, Ranadip Kumar
    Soni, Hargovind
    PROCESSES, 2023, 11 (03)
  • [30] A numerical investigation of the compressible flow in the ejector of a vapour ejector refrigeration system
    Megalingam, A.
    Babu, V.
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2020, 20 (01): : 29 - 39