Independent zero-knowledge sets

被引:0
|
作者
Gennaro, Rosario [1 ]
Micali, Silvio
机构
[1] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] MIT, CSAIL, Cambridge, MA 02139 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define and construct Independent Zero-Knowledge Sets (ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and for any x, proves non-interactively to a Verifier if x is an element of S or x is not an element of S without revealing any other information about S. In the independent ZKS protocols we introduce, the adversary is prevented from successfully correlate her set to the one of a honest prover. Our notion of independence in particular implies that the resulting ZKS protocol is non-malleable. On the way to this result we define the notion of independence for commitment schemes. It is shown that this notion implies non-malleability, and we argue that this new notion has the potential to simplify the design and security proof of non-malleable commitment schemes. Efficient implementations of ZKS protocols are based on the notion of mercurial commitments. Our efficient constructions of independent ZKS protocols requires the design of new commitment schemes that are simultaneously independent (and thus non-malleable) and mercurial.
引用
收藏
页码:34 / 45
页数:12
相关论文
共 50 条
  • [21] Zero-Knowledge in EasyCrypt
    Firsov, Denis
    Unruh, Dominique
    [J]. 2023 IEEE 36TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM, CSF, 2023, : 1 - 16
  • [22] Reduction zero-knowledge
    LEE C. H.
    [J]. Progress in Natural Science:Materials International, 2004, (04) : 64 - 72
  • [23] NONINTERACTIVE ZERO-KNOWLEDGE
    BLUM, M
    DESANTIS, A
    MICALI, S
    PERSIANO, G
    [J]. SIAM JOURNAL ON COMPUTING, 1991, 20 (06) : 1084 - 1118
  • [24] Solitaire zero-knowledge
    Niemi, Valtteri
    Renvall, Ari
    [J]. Fundamenta Informaticae, 1999, 38 (1-2): : 181 - 188
  • [25] Zero-Knowledge Traders
    Carrella, Ernesto
    [J]. JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2014, 17 (03): : 05
  • [26] ZERO-KNOWLEDGE PROOFS
    WAYNER, P
    [J]. BYTE, 1987, 12 (11): : 149 - 152
  • [27] Subquadratic zero-knowledge
    [J]. J Assoc Comput Mach, 6 (1169):
  • [28] Subquadratic zero-knowledge
    Boyar, J
    Brassard, G
    Peralta, R
    [J]. JOURNAL OF THE ACM, 1995, 42 (06) : 1169 - 1193
  • [29] A New Efficient Construction for Non-Malleable Zero-Knowledge Sets
    Jing, Wenpan
    Xu, Haixia
    Li, Bao
    [J]. INFORMATION SECURITY APPLICATIONS, 2011, 6513 : 31 - 43
  • [30] Zero-knowledge proofs for finite field arithmetic, or:: Can zero-knowledge be for free?
    Cramer, R
    Damgård, I
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO'98, 1998, 1462 : 424 - 441