On Sets of Line Segments Featuring a Cactus Structure

被引:1
|
作者
Brimkov, Boris [1 ]
机构
[1] Rice Univ, Computat & Appl Math, Houston, TX 77005 USA
来源
基金
美国国家科学基金会;
关键词
Set of segments; Cactus graph; Segment intersections; Segment cycle; IN-PLACE; ALGORITHMS; INTERSECTION; GRAPHS;
D O I
10.1007/978-3-319-59108-7_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we derive sharp upper and lower bounds on the number of intersections and closed regions that can occur in a set of line segments whose underlying planar graph is a cactus graph. These bounds can be used to evaluate the complexity of certain algorithms for problems defined on sets of segments in terms of the cardinality of the segment sets. In particular, we give an application in the problem of finding a path between two points in a set of segments which travels through a minimum number of segments.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] TRACKING LINE SEGMENTS
    DERICHE, R
    FAUGERAS, O
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1990, 427 : 259 - 268
  • [32] DETECTION OF LINE SEGMENTS
    BACON, JP
    KINGSMITH, PE
    [J]. PERCEPTION, 1977, 6 (02) : 125 - 131
  • [33] TRACKING LINE SEGMENTS
    DERICHE, R
    FAUGERAS, O
    [J]. IMAGE AND VISION COMPUTING, 1990, 8 (04) : 261 - 270
  • [34] Structure from Motion with Line Segments Under Relaxed Endpoint Constraints
    Branislav Micusik
    Horst Wildenauer
    [J]. International Journal of Computer Vision, 2017, 124 : 65 - 79
  • [35] Stabbing Circles for Sets of Segments in the Plane
    Mercè Claverol
    Elena Khramtcova
    Evanthia Papadopoulou
    Maria Saumell
    Carlos Seara
    [J]. Algorithmica, 2018, 80 : 849 - 884
  • [36] Stabbing Circles for Sets of Segments in the Plane
    Claverol, Merce
    Khramtcova, Elena
    Papadopoulou, Evanthia
    Saumell, Maria
    Seara, Carlos
    [J]. ALGORITHMICA, 2018, 80 (03) : 849 - 884
  • [37] The composite structure of cactus spines
    Schlegel, Urs
    [J]. BRADLEYA, 2009, 27 : 129 - 138
  • [38] The spanning line segments of a polyhedron
    Wang, JY
    Liu, DY
    Chen, XM
    Woo, TC
    [J]. JOURNAL OF MECHANICAL DESIGN, 1996, 118 (01) : 40 - 44
  • [39] SHORTEST PATHS FOR LINE SEGMENTS
    ICKING, C
    ROTE, G
    WELZL, E
    YAP, C
    [J]. ALGORITHMICA, 1993, 10 (2-4) : 182 - 200
  • [40] Topics on line segments and polygons
    Hosono, K
    Urabe, M
    Watanabe, M
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 99 - 104