InAsSb pillars for multispectral long-wavelength infrared absorption

被引:2
|
作者
Goosney, Curtis J. [1 ]
Jarvis, Victoria M. [2 ]
Britten, James F. [2 ]
LaPierre, Ray R. [1 ]
机构
[1] McMaster Univ, Dept Engn Phys, 1280 Main St West, Hamilton, ON L8S 4L7, Canada
[2] McMaster Univ, McMaster Analyt XRay Diffract Facil, 1280 Main St West, Hamilton, ON L8S 4M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Pillar; Indium arsenide antimonide; Molecular beam epitaxy; Long wavelength infrared; Multispectral; MOLECULAR-BEAM EPITAXY; NANOWIRE ARRAYS; SURFACTANT; GROWTH; MORPHOLOGY; GAAS;
D O I
10.1016/j.infrared.2020.103566
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
InAsSb pillars were investigated for multispectral photodetection in the long wavelength infrared (LWIR) region. An InAs0.19Sb0.81 thin film was successfully grown on Si (100) substrate, utilizing an AlSb buffer layer to alleviate the large lattice mismatch. X-ray diffraction studies showed a majority [100] orientation of the as-grown films, with minor orientations arising as a result of twinning. Arrays of InAsSb pillars with diameters ranging from 1700 nm to 4000 nm were fabricated by a top-down reactive ion etching process. The arrays showed resonant optical absorption peaks in the LWIR region from 8 to 16 mu m wavelength, dependent on the pillar diameter. The peak absorptance wavelength increased by 0.46 mu m for each 100 nm increase in pillar diameter, demonstrating the multispectral tunability of such arrays.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Multistep InAs/InAsSb staircase nBn long-wavelength infrared detectors with enhanced charge carrier transport
    Cui, Xinyue
    Yuan, Qi
    Guo, Daqian
    Li, Chuang
    Shen, Kai
    Wu, Jiang
    INFRARED PHYSICS & TECHNOLOGY, 2023, 134
  • [22] Long-wavelength infrared solitons in air
    Voronin, A. A.
    Zheltikov, A. M.
    OPTICS LETTERS, 2017, 42 (18) : 3614 - 3617
  • [23] LWIP - A LONG-WAVELENGTH INFRARED PHOTOTRANSISTOR
    CHAND, N
    ELECTRONICS LETTERS, 1993, 29 (20) : 1800 - 1802
  • [24] OPTICAL FILTERS FOR LONG-WAVELENGTH INFRARED
    RUDYAVSKAYA, IG
    STANEVICH, AE
    CHERNYAVSKAYA, NA
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1978, 45 (02): : 114 - 122
  • [25] Study on long-wavelength infrared glasses
    Wang, Yan-Hang
    Zu, Cheng-Kui
    Zhao, Hua
    He, Kun
    Zhao, Hui-Feng
    Chen, Jiang
    Han, Bin
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (SUPPL. 2): : 196 - 200
  • [26] Effect of annealing process on electrical properties of InAsSb materials with long-wavelength
    Gao, Yu-Zhu
    Zhou, Ran
    Gong, Xiu-Ying
    Du, Chuan-Xing
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2014, 35 (12): : 11 - 14
  • [27] ON THE LONG-WAVELENGTH ABSORPTION BY INTERSTELLAR DUST
    WRIGHT, EL
    ASTROPHYSICAL JOURNAL, 1991, 375 (02): : 608 - 610
  • [28] Ultra-broadband long-wavelength infrared metamaterial absorber based on hybrid structure of holes and pillars
    Chen, Cheng
    Liu, YanHua
    Xu, WenWen
    Chen, LinSen
    Huang, WenBin
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES VII, 2020, 11559
  • [29] LONG-WAVELENGTH INFRARED STIMULATION OF LUMINESCENCE IN ZNS
    ANDERSON, WW
    ENOMOTO, T
    BHATTI, IS
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1975, 32 (01): : 269 - 278
  • [30] Tunneling in long-wavelength infrared HgCdTe photodiodes
    Krishnamurthy, S.
    Berding, M. A.
    Robinson, H.
    Sher, A.
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) : 1399 - 1402