Optimization of milling parameters for the mechanosynthesis of nanocrystalline hydroxyapatite

被引:25
|
作者
Mandal, T. [1 ]
Mishra, B. K. [2 ]
Garg, A. [1 ]
Chaira, D. [3 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mat Sci & Engn, Kanpur, Uttar Pradesh, India
[2] Inst Minerals & Mat Technol Bhubaneswar, Bhubaneswar, Orissa, India
[3] Natl Inst Technol Rourkela, Dept Met & Mat Engn, Rourkela, India
关键词
Powder metallurgy; Hydroxyapatite; Nanostructured materials; Mechanosynthesis; PHOSPHATE; CERAMICS; POWDERS; BONE; CARBIDE; PROTEIN;
D O I
10.1016/j.powtec.2013.12.026
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Here we report synthesis of nanocrystalline hydroxyapatite (HAP), a bone substitute, through dry mechanochemical method using phosphorous pentoxide and calcium hydroxide powders as starting materials, in a specially designed high-energy dual-drive planetary mill which is able to generate a strong gravitational (around 100 g) field inside the planetary mill thereby reducing the synthesis time significantly. Effects of various milling parameters such as milling time, ball to powder weight ratio, ball size and critical speed of the mill were investigated to understand their effect on the milling process and formation of nanocrystalline HAP. The study shows that the optimum conditions for the synthesis of nanocrystalline HAP is achieved when grinding is performed at a critical speed of 60% using a 4 mm diameter ball at a charge ratio of 20:1 for 15 h. X-ray diffraction and Fourier transform infra red (FT-IR) analysis confirmed phase purity of the nanocrystalline HAP powders. Electron microscopy of the milled HAP powder shows that powder particles are spherical and around 100 nm in size. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:650 / 656
页数:7
相关论文
共 50 条
  • [1] Effect of Polymeric Milling Media on the Mechanosynthesis and Structural Properties of Nanocrystalline Hydroxyapatite
    Shokuhfar, A.
    Nasiri-Tabrizi, B.
    Gashti, O.
    Ebrahimi-Kahrizsangi, R.
    [J]. DIFFUSION IN SOLIDS AND LIQUIDS IV, 2009, 283-286 : 98 - +
  • [2] Planetary milling parameters optimization for the production of ZnO nanocrystalline
    Lemine, O. M.
    Louly, M. A.
    Al-Ahmari, A. M.
    [J]. INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (17): : 2721 - 2729
  • [3] Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: Structural characterisation
    Mochales, Carolina
    Wilson, Rory M.
    Dowker, Stephanie E. P.
    Ginebra, Maria-Pau
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (27) : 7389 - 7394
  • [4] Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials
    Nasiri-Tabrizi, Bahman
    Fahami, Abbas
    Ebrahimi-Kahrizsangi, Reza
    [J]. CERAMICS INTERNATIONAL, 2013, 39 (05) : 5751 - 5763
  • [5] MECHANOSYNTHESIS OF NANOCRYSTALLINE MATERIALS
    LECAER, G
    MATTEAZZI, P
    [J]. HYPERFINE INTERACTIONS, 1994, 90 (1-4): : 229 - 242
  • [6] Mechanosynthesis of nanocrystalline Cu with Al2O3 dispersion by cryogenic milling
    Lee, Jin-Hyung
    Hwang, Seung J.
    [J]. REVIEWS ON ADVANCED MATERIALS SCIENCE, 2008, 18 (03) : 289 - 292
  • [7] Study of the effect of milling parameters on mechanosynthesis of hydroxyfluorapatite using the Taguchi method
    Hajji, Hanen
    Nasr, Samia
    Millot, Nadine
    Ben Salem, Ezzedine
    [J]. POWDER TECHNOLOGY, 2019, 356 : 566 - 580
  • [8] Structural properties of hydroxyapatite obtained by mechanosynthesis
    Silva, CC
    Pinheiro, AG
    Miranda, MAR
    Góes, JC
    Sombra, ASB
    [J]. SOLID STATE SCIENCES, 2003, 5 (04) : 553 - 558
  • [9] Mechanosynthesis of hydroxyapatite-ferrite composite nanopowder
    Vlasova, M.
    Fedotov, A.
    Mendoza Torrez, I.
    Kakazey, M.
    Komlev, V.
    Marquez Aguilar, P. A.
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (08) : 6221 - 6231
  • [10] Nanocrystalline ferrites prepared by mechanical activation and mechanosynthesis
    Sepelák, V
    Bergmann, I
    Kipp, S
    Becker, KD
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2005, 631 (6-7): : 993 - 1003