Vector Control Lyapunov Functions as a Tool for Decentralized and Distributed Control

被引:0
|
作者
Karafyllis, Iasson [1 ]
Jiang, Zhong-Ping [2 ]
机构
[1] Tech Univ Crete, Dept Environm Engn, Khania 73100, Greece
[2] Polytech Inst New York, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
关键词
NONLINEAR DYNAMICAL-SYSTEMS; STABILITY; STABILIZATION; THEOREM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel tool based on vector control Lyapunov functions for complex nonlinear control systems. It is shown that the existence of a vector control Lyapunov function is a necessary and sufficient condition for the existence of a smooth globally stabilizing feedback. This main result is then applied to the problem of designing globally stabilizing feedback laws for nonlinear systems. Practically checkable sufficient conditions are proposed to guarantee the existence of a smooth globally stabilizing feedback law.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] CONTROL OF DECENTRALIZED SYSTEMS WITH DISTRIBUTED CONTROLLER COMPLEXITY
    ANDERSON, BDO
    LINNEMANN, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (07) : 625 - 629
  • [42] Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions
    Nersesov, Sergey G.
    Haddad, Wassim M.
    Hui, Qing
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (07): : 819 - 837
  • [43] On receding horizon extensions and control Lyapunov functions
    Primbs, JA
    Nevistic, V
    Doyle, JC
    [J]. PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3276 - 3280
  • [44] Lyapunov functions for impulse and hybrid control systems
    Aubin, JP
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 466 - 471
  • [45] Decentralized Control Methods in Hypergraph Distributed Optimization
    Papastaikoudis, Ioannis
    Lestas, Ioannis
    [J]. COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 3, COMPLEX NETWORKS 2023, 2024, 1143 : 159 - 170
  • [46] Separable Control Lyapunov Functions With Application to Prostheses
    Gehlhar, Rachel
    Ames, Aaron D.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 559 - 564
  • [47] ROBUST-CONTROL BY 2 LYAPUNOV FUNCTIONS
    QU, ZH
    DORSEY, J
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (06) : 1335 - 1350
  • [48] LINEARLY SOLVABLE STOCHASTIC CONTROL LYAPUNOV FUNCTIONS
    Leong, Yoke Peng
    Horowitz, Matanya B.
    Burdick, Joel W.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (06) : 3106 - 3125
  • [49] A family of piecewise affine control Lyapunov functions
    Ngoc Anh Nguyen
    Olaru, Sorin
    [J]. AUTOMATICA, 2018, 90 : 212 - 219
  • [50] Adaptive Backstepping Control for Vehicular Platoons with Mismatched Disturbances Using Vector String Lyapunov Functions
    Song, Zihao
    Welikala, Shirantha
    Antsaklis, Panos J.
    Lin, Hai
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 4525 - 4530