Convergence analysis of a numerical method for a mean field model of superconducting vortices

被引:3
|
作者
Du, Q [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
关键词
mean field model; superconductivity; vortices; finite element; conforming and nonconforming; finite volume; covolume; finite difference; staggered grid; convergence analysis;
D O I
10.1137/S0036142998345517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the mean field models of superconductivity, the individual vortex-like structures occurring in practical type-II superconductors are averaged and a vortex density is solved for them. The numerical solution of the mean field models makes large-scale simulations of vortex phenomena possible. In this paper, we present a simple convergence analysis for a numerical method based on hybrid finite element/finite volume/finite difference approximations in the two-dimensional case, by providing various different interpretations to the discretization scheme.
引用
收藏
页码:911 / 926
页数:16
相关论文
共 50 条
  • [41] Numerical simulations of the quantized vortices on a thin superconducting hollow sphere
    Du, Q
    Ju, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (02) : 511 - 530
  • [42] Mean field equation for equilibrium vortices with neutral orientation
    Sawada, Ken
    Suzuki, Takashi
    Takahashi, Futoshi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 509 - 526
  • [43] Numerical Winding Model for the Analysis of Superconducting Insert Coils
    Pelegrin, J.
    Young, E. A.
    Yang, Y.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
  • [44] Numerical Analysis of the Pulse Field Penetration into Bulk Superconducting Annulus
    Brazhnik, P. A.
    Krasnoperov, E. P.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2022, 35 (06) : 1465 - 1471
  • [45] Numerical Analysis of the Pulse Field Penetration into Bulk Superconducting Annulus
    P. A. Brazhnik
    E. P. Krasnoperov
    Journal of Superconductivity and Novel Magnetism, 2022, 35 : 1465 - 1471
  • [46] Convergence analysis of a numerical scheme for a tumour growth model
    Droniou, Jerome
    Nataraj, Neela
    Remesan, Gopikrishnan C.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1180 - 1230
  • [47] Numerical stability and convergence analysis of bone remodeling model
    Garijo, N.
    Fernandez, J. R.
    Perez, M. A.
    Garcia-Aznar, J. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 271 : 253 - 268
  • [48] Metabifurcation analysis of a mean field model of the cortex
    Frascoli, Federico
    van Veen, Lennaert
    Bojak, Ingo
    Liley, David T. J.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (11) : 949 - 962
  • [49] ON THE CONVERGENCE PROBLEM IN MEAN FIELD GAMES: A TWO STATE MODEL WITHOUT UNIQUENESS
    Cecchin, Alekos
    Pra, Paolo Dai
    Fischer, Markus
    Pelino, Guglielmo
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2443 - 2466
  • [50] Numerical analysis of propeller induced ground vortices by actuator disk model
    Yang, Y.
    Veldhuis, L. L. M.
    Eitelberg, G.
    JOURNAL OF VISUALIZATION, 2018, 21 (01) : 117 - 132