Video Frame Interpolation With Learnable Uncertainty and Decomposition

被引:4
|
作者
Yu, Zhiyang [1 ]
Chen, Xijun [1 ]
Ren, Shunqing [1 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 230100, Peoples R China
关键词
Uncertainty; Interpolation; Couplings; Neural networks; Convolution; Optical flow; Estimation; Signal decomposition; uncertainty estimation; video frame interpolation;
D O I
10.1109/LSP.2022.3232277
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video frame interpolation can flexibly increase the temporal resolution of low frame-rate videos by generating the missing intermediate frames at any time. Existing methods generally train a renderer to predict rgb frames based on estimated clues. It tends to generate blurry outputs with unpleasing artifacts due to false clues and the neural network's bias in favor of low-frequency information. To address this problem, we propose a novel two-stage supervised framework. The inaccuracy of clues is modeled as uncertainty which can be estimated by training implicitly with a parameterized loss function in stage one. The bias is alleviated in stage two by regressing a lossless decomposition of frames instead of the raw rgbs. The decomposition can be achieved by several invertible cross-coupling layers, motivating the network to synthesize high-frequency details. Moreover, the proposed framework is equipped with a time-varying neural network that is adaptive to the timestamp of any intermediate frame, bringing benefits to multiple-frame interpolation. Both qualitative and quantitative experiments demonstrate the superiority of our proposed approach.
引用
收藏
页码:2642 / 2646
页数:5
相关论文
共 50 条
  • [11] Video Frame Interpolation with Flow Transformer
    Gao, Pan
    Tian, Haoyue
    Qin, Jie
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1933 - 1942
  • [12] A CONCATENATED MODEL FOR VIDEO FRAME INTERPOLATION
    Chen, Ying
    Smith, Mark J. T.
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 565 - 569
  • [13] Deep Bayesian Video Frame Interpolation
    Yu, Zhiyang
    Zhang, Yu
    Xiang, Xujie
    Zou, Dongqing
    Chen, Xijun
    Ren, Jimmy S.
    COMPUTER VISION - ECCV 2022, PT XV, 2022, 13675 : 144 - 160
  • [14] MULTI-FRAME VIDEO PREDICTION WITH LEARNABLE MOTION ENCODINGS
    Jasti, Rakesh
    Jampani, Varun
    Sun, Deqing
    Yang, Ming-Hsuan
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4198 - 4202
  • [15] Optimizing Video Prediction via Video Frame Interpolation
    Wu, Yue
    Wen, Qiang
    Chen, Qifeng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17793 - 17802
  • [16] Deep Video Frame Interpolation Using Cyclic Frame Generation
    Liu, Yu-Lun
    Liao, Yi-Tung
    Lin, Yen-Yu
    Chuang, Yung-Yu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8794 - 8802
  • [17] Video Object Segmentation-aware Video Frame Interpolation
    Yoo, Jun-Sang
    Lee, Hongjae
    Jung, Seung-Won
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12288 - 12299
  • [18] A comprehensive survey on video frame interpolation techniques
    Parihar, Anil Singh
    Varshney, Disha
    Pandya, Kshitija
    Aggarwal, Ashray
    VISUAL COMPUTER, 2022, 38 (01): : 295 - 319
  • [19] Video Frame Interpolation via Adaptive Convolution
    Niklaus, Simon
    Mai, Long
    Liu, Feng
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2270 - 2279
  • [20] Hybrid Warping Fusion for Video Frame Interpolation
    Li, Yu
    Zhu, Ye
    Li, Ruoteng
    Wang, Xintao
    Luo, Yue
    Shan, Ying
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) : 2980 - 2993