Machine learning methods to predict unmeasured confounders in claims data: A real-world application

被引:0
|
作者
Albogami, Yasser [1 ,2 ]
Daniels, Michael J. [3 ]
Wei, Yu-Jung [1 ]
Cusi, Kenneth [4 ]
Winterstein, Almut G. [1 ]
机构
[1] Univ Florida, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[2] King Saud Univ, Clin Pharm Dept, Riyadh, Saudi Arabia
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
5060
引用
下载
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [31] A study of real-world micrograph data quality and machine learning model robustness
    Zhong, Xiaoting
    Gallagher, Brian
    Eves, Keenan
    Robertson, Emily
    Mundhenk, T. Nathan
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [32] A study of real-world micrograph data quality and machine learning model robustness
    Xiaoting Zhong
    Brian Gallagher
    Keenan Eves
    Emily Robertson
    T. Nathan Mundhenk
    T. Yong-Jin Han
    npj Computational Materials, 7
  • [33] HOW TO MEASURE 'OPIOID RELAPSE' IN REAL-WORLD CLAIMS DATA
    Montejano, L. B.
    Ronquest, N. A.
    Willson, T. M.
    Wollschlaeger, B. A.
    Cole, A. L.
    Nadipelli, V. R.
    VALUE IN HEALTH, 2016, 19 (03) : A72 - A72
  • [34] Zostavax vaccine effectiveness among US elderly using real-world evidence: Addressing unmeasured confounders by using multiple imputation after linking beneficiary surveys with Medicare claims
    Izurieta, Hector S.
    Wu, Xiyuan
    Lu, Yun
    Chillarige, Yoganand
    Wernecke, Michael
    Lindaas, Arnstein
    Pratt, Douglas
    MaCurdy, Thomas E.
    Chu, Steve
    Kelman, Jeffrey
    Forshee, Richard
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 (07) : 993 - 1001
  • [35] PREDICTIVE MODELS LEVERAGING MACHINE LEARNING AND REAL-WORLD DATA FOR EARLY DIAGNOSIS: AN APPLICATION IN AMYOTROPHIC LATERAL SCLEROSIS
    Nathan, R.
    Miller, C.
    Shukla, O.
    Garbayo, A.
    Hagan, M.
    Harrison, A.
    Ciepielewska, M.
    Apple, S.
    VALUE IN HEALTH, 2021, 24 : S169 - S169
  • [36] Machine Learning Methods for Disease Prediction with Claims Data
    Christensen, Tanner
    Frandsen, Abraham
    Glazier, Seth
    Humpherys, Jeffrey
    Kartchner, David
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 467 - 471
  • [37] Real-World Evidence, Causal Inference, and Machine Learning
    Crown, William H.
    VALUE IN HEALTH, 2019, 22 (05) : 587 - 592
  • [38] Real-World Battles with Real-World Data
    Brown, Jeffrey
    Bate, Andrew
    Platt, Robert
    Raebel, Marsha
    Sauer, Brian
    Trifiro, Gianluca
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 254 - 255
  • [39] How Well Can Machine Learning Predict Late Seizures after Intracerebral Hemorrhages? Evidence from Real-World Data
    Lekoubou, Alain
    Petucci, Justin
    Katoch, Avinsh
    Honavar, Vasant
    ANNALS OF NEUROLOGY, 2023, 94 : S128 - S128
  • [40] DATA ENVELOPMENT ANALYSIS - A REAL-WORLD APPLICATION
    DYSON, RG
    FOSTER, MJ
    THANASSOULIS, E
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1985, 36 (12) : 1145 - 1145