Machine learning methods to predict unmeasured confounders in claims data: A real-world application

被引:0
|
作者
Albogami, Yasser [1 ,2 ]
Daniels, Michael J. [3 ]
Wei, Yu-Jung [1 ]
Cusi, Kenneth [4 ]
Winterstein, Almut G. [1 ]
机构
[1] Univ Florida, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[2] King Saud Univ, Clin Pharm Dept, Riyadh, Saudi Arabia
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
5060
引用
下载
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [1] Real-World Data and Machine Learning to Predict Cardiac Amyloidosis
    Garcia-Garcia, Elena
    Maria Gonzalez-Romero, Gracia
    Martin-Perez, Encarna M.
    Zapata Cornejo, Enrique de Dios
    Escobar-Aguilar, Gema
    Cardenas Bonnet, Marlon Felix
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (03) : 1 - 15
  • [2] Assessing the impact of unmeasured confounders for credible and reliable real-world evidence
    Zhang, Xiang
    Stamey, James D.
    Mathur, Maya B.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 (10) : 1219 - 1227
  • [3] Using machine learning on real-world data to predict metastatic status.
    Green, Foad H.
    Huang, Hu T.
    Lerman, Michelle
    Tran, Mary
    Subramanian, Vinod
    Loving, Joshua
    Rioth, Matthew J.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [4] Machine Learning and Real-World Data to Predict Lung Cancer Risk in Routine Care
    Chandran, Urmila
    Reps, Jenna
    Yang, Robert
    Vachani, Anil
    Maldonado, Fabien
    Kalsekar, Iftekhar
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2023, 32 (03) : 337 - 343
  • [5] Towards Machine Learning with Zero Real-World Data
    Kang, Cholmin
    Jung, Hyunwoo
    Lee, Youngki
    WEARSYS'19: PROCEEDINGS OF THE 5TH ACM WORKSHOP ON WEARABLE SYSTEMS AND APPLICATIONS, 2019, : 41 - 46
  • [6] Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information
    Schneeweiss, S
    Glynn, RJ
    Tsai, EH
    Avorn, J
    Solomon, DH
    EPIDEMIOLOGY, 2005, 16 (01) : 17 - 24
  • [7] Machine Learning Methods in Real-World Studies of Cardiovascular Disease
    Zhou, Jiawei
    You, Dongfang
    Bai, Jianling
    Chen, Xin
    Wu, Yaqian
    Wang, Zhongtian
    Tang, Yingdan
    Zhao, Yang
    Feng, Guoshuang
    CARDIOVASCULAR INNOVATIONS AND APPLICATIONS, 2022, 7 (01)
  • [8] Application of machine learning techniques in real-world research to predict the risk of liver metastasis in rectal cancer
    Qiu, Binxu
    Su, Xiao Hu
    Qin, Xinxin
    Wang, Quan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Learning With Real-World Data
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 158 - 159
  • [10] Data Science Methods for Real-World Evidence Generation in Real-World Data
    Liu, Fang
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2024, 7 : 201 - 224