Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy

被引:100
|
作者
Zhang, Cheng [1 ]
Zhu, Chaoyi [2 ]
Cao, Penghui [1 ]
Wang, Xin [1 ]
Ye, Fan [1 ]
Kaufmann, Kevin [3 ]
Casalena, Lee [4 ]
MacDonald, Benjamin E. [1 ]
Pan, Xiaoqing [1 ]
Vecchio, Kenneth [2 ,3 ]
Lavernia, Enrique J.
机构
[1] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92717 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[4] Thermo Fisher Sci, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA
关键词
High-entropy alloys; Deformation mechanism; Gnd density; Precipitation strengthening; Heterogeneous lamella structure; DEFORMATION STRUCTURES; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; BACK STRESS; MICROSTRUCTURE; PRECIPITATION; DESIGN; DISLOCATION; RECRYSTALLIZATION; LOCALIZATION;
D O I
10.1016/j.actamat.2020.08.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys containing multi-principal-element systems significantly expand the potential alloy design space, and offer the possibility of overcoming the strength-ductility trade-off in metallurgical research. However, the gain in ultra-high strength through traditional grain refinement and precipitation-strengthening mechanisms inevitably leads to a drastic loss of ductility. Here, we report on the design and fabrication of heterogeneous-lamella structured, aged bulk high-entropy alloy, which attains giga-pascal tensile strength while retaining excellent ductility (UTS similar to 1.4 GPa, elongation similar to 30%; UTS similar to 1.7 GPa, elongation similar to 10%). Our work shows that the improved strength-ductility synergy arises due to various complementary strengthening mechanisms, including solid-solution, interfaces, precipitation and martensitic transformation, which influence the hardening and deformation processes at different strain levels. In particular, the hetero-deformation that is associated with the formation of microbands as well as the stress-induced martensite promotes additional hardening and hence high ductility. The strategy described here, that is leveraging the concept of heterogeneous microstructure design, provides a practical and novel method for fabricating high-performance structural materials. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:602 / 612
页数:11
相关论文
共 50 条
  • [21] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [22] Lightweight Ti-Zr-Nb-Al-V refractory high-entropy alloys with superior strength-ductility synergy and corrosion resistance
    Wang, Hao
    Chen, Weiping
    Fu, Zhiqiang
    Chu, Chenliang
    Tian, Zhao
    Jiang, Zhenfei
    Wen, Haiming
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 116
  • [23] Heterogeneous structure-induced strength-ductility synergy by partial recrystallization during friction stir welding of a high-entropy alloy
    Lin, Po-Ting
    Liu, Hung-Chi
    Hsieh, Po-Ying
    Wei, Cheng-Yu
    Tsai, Che-Wei
    Sato, Yutaka S.
    Chen, Shih-Che
    Yen, Hung-Wei
    Lu, Nian-Hu
    Chen, Chih-Hsuan
    MATERIALS & DESIGN, 2021, 197
  • [24] Constructing a heterogeneous microstructure in the CoCrFeNi-based high entropy alloy to obtain a superior strength-ductility synergy
    Wu, Baolin
    Man, Jiale
    Duan, Guosheng
    Zhang, Lu
    Du, Xinghao
    Liu, Yandong
    Esling, Claude
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [25] Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy
    Evan Ma
    Xiaolei Wu
    Nature Communications, 10
  • [26] Strength-ductility synergy of an additively manufactured metastable high-entropy alloy achieved by transformation-induced plasticity strengthening
    Tian, Chunmao
    Ouyang, Di
    Wang, Pengbo
    Zhang, Lichao
    Cai, Chao
    Zhou, Kun
    Shi, Yusheng
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 172
  • [27] Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure
    Wu, S. W.
    Wang, G.
    Wang, Q.
    Jia, Y. D.
    Yi, J.
    Zhai, Q. J.
    Liu, J. B.
    Sun, B. A.
    Chu, H. J.
    Shen, J.
    Liaw, P. K.
    Liu, C. T.
    Zhang, T. Y.
    ACTA MATERIALIA, 2019, 165 : 444 - 458
  • [28] Strength-ductility synergy in heterogeneous-structured metals and alloys
    Jiang, Jiaxi
    Chen, Zekun
    Ma, Huachun
    Xing, Hanzheng
    Li, Xiaoyan
    MATTER, 2022, 5 (08) : 2430 - 2433
  • [29] Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae
    Shi, Peijian
    Ren, Weili
    Zheng, Tianxiang
    Ren, Zhongming
    Hou, Xueling
    Peng, Jianchao
    Hu, Pengfei
    Gao, Yanfei
    Zhong, Yunbo
    Liaw, Peter K.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [30] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114