Self-Supervised Learning and Multi-Task Pre-Training Based Single-Channel Acoustic Denoising

被引:0
|
作者
Li, Yi [1 ]
Sun, Yang [2 ]
Naqvi, Syed Mohsen [1 ]
机构
[1] Newcastle Univ, Sch Engn, Intelligent Sensing & Commun Grp, Newcastle Upon Tyne NE1 7RU, England
[2] Univ Oxford, Big Data Inst, Oxford OX3 7LF, England
关键词
MONAURAL SOURCE SEPARATION; SPEECH; ENVIRONMENTS;
D O I
10.1109/MFI55806.2022.9913855
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In self-supervised learning-based single-channel speech denoising problem, it is challenging to reduce the gap between the denoising performance on the estimated and target speech signals with existed pre-tasks. In this paper, we propose a multi-task pre-training method to improve the speech denoising performance within self-supervised learning. In the proposed pre-training autoencoder (PAE), only a very limited set of unpaired and unseen clean speech signals are required to learn speech latent representations. Meanwhile, to solve the limitation of existing single pre-task, the proposed masking module exploits the dereverberated mask and estimated ratio mask to denoise the mixture as the new pre-task. The downstream task autoencoder (DAE) utilizes unlabeled and unseen reverberant mixtures to generate the estimated mixtures. The DAE is trained to share a latent representation with the clean examples from the learned representation in the PAE. Experimental results on a benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
    Li, Zhaowen
    Zhu, Yousong
    Yang, Fan
    Li, Wei
    Zhao, Chaoyang
    Chen, Yingying
    Chen, Zhiyang
    Xie, Jiahao
    Wu, Liwei
    Zhao, Rui
    Tang, Ming
    Wang, Jinqiao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14607 - 14616
  • [42] A Multi-Task Dense Network with Self-Supervised Learning for Retinal Vessel Segmentation
    Tu, Zhonghao
    Zhou, Qian
    Zou, Hua
    Zhang, Xuedong
    ELECTRONICS, 2022, 11 (21)
  • [43] GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition
    Li, Yang
    Chen, Ji
    Li, Fu
    Fu, Boxun
    Wu, Hao
    Ji, Youshuo
    Zhou, Yijin
    Niu, Yi
    Shi, Guangming
    Zheng, Wenming
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2512 - 2525
  • [44] Representation Recovering for Self-Supervised Pre-training on Medical Images
    Yan, Xiangyi
    Naushad, Junayed
    Sun, Shanlin
    Han, Kun
    Tang, Hao
    Kong, Deying
    Ma, Haoyu
    You, Chenyu
    Xie, Xiaohui
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2684 - 2694
  • [45] Reducing Domain mismatch in Self-supervised speech pre-training
    Baskar, Murali Karthick
    Rosenberg, Andrew
    Ramabhadran, Bhuvana
    Zhang, Yu
    INTERSPEECH 2022, 2022, : 3028 - 3032
  • [46] Self-supervised VICReg pre-training for Brugada ECG detection
    Robert Ronan
    Constantine Tarabanis
    Larry Chinitz
    Lior Jankelson
    Scientific Reports, 15 (1)
  • [47] A Self-Supervised Pre-Training Method for Chinese Spelling Correction
    Su J.
    Yu S.
    Hong X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (09): : 90 - 98
  • [48] MULTI-TASK SELF-SUPERVISED VISUAL REPRESENTATION LEARNING FOR MONOCULAR ROAD SEGMENTATION
    Cho, Jaehoon
    Kim, Youngjung
    Jung, Hyungjoo
    Oh, Changjae
    Youn, Jaesung
    Sohn, Kwanghoon
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [49] scPretrain: multi-task self-supervised learning for cell-type classification
    Zhang, Ruiyi
    Luo, Yunan
    Ma, Jianzhu
    Zhang, Ming
    Wang, Sheng
    BIOINFORMATICS, 2022, 38 (06) : 1607 - 1614
  • [50] Self-supervised Adversarial Multi-task Learning for Vocoder-based Monaural Speech Enhancement
    Du, Zhihao
    Lei, Ming
    Han, Jiqing
    Zhang, Shiliang
    INTERSPEECH 2020, 2020, : 3271 - 3275