Self-Supervised Learning and Multi-Task Pre-Training Based Single-Channel Acoustic Denoising

被引:0
|
作者
Li, Yi [1 ]
Sun, Yang [2 ]
Naqvi, Syed Mohsen [1 ]
机构
[1] Newcastle Univ, Sch Engn, Intelligent Sensing & Commun Grp, Newcastle Upon Tyne NE1 7RU, England
[2] Univ Oxford, Big Data Inst, Oxford OX3 7LF, England
关键词
MONAURAL SOURCE SEPARATION; SPEECH; ENVIRONMENTS;
D O I
10.1109/MFI55806.2022.9913855
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In self-supervised learning-based single-channel speech denoising problem, it is challenging to reduce the gap between the denoising performance on the estimated and target speech signals with existed pre-tasks. In this paper, we propose a multi-task pre-training method to improve the speech denoising performance within self-supervised learning. In the proposed pre-training autoencoder (PAE), only a very limited set of unpaired and unseen clean speech signals are required to learn speech latent representations. Meanwhile, to solve the limitation of existing single pre-task, the proposed masking module exploits the dereverberated mask and estimated ratio mask to denoise the mixture as the new pre-task. The downstream task autoencoder (DAE) utilizes unlabeled and unseen reverberant mixtures to generate the estimated mixtures. The DAE is trained to share a latent representation with the clean examples from the learned representation in the PAE. Experimental results on a benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MULTI-TASK SELF-SUPERVISED PRE-TRAINING FOR MUSIC CLASSIFICATION
    Wu, Ho-Hsiang
    Kao, Chieh-Chi
    Tang, Qingming
    Sun, Ming
    McFee, Brian
    Bello, Juan Pablo
    Wang, Chao
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 556 - 560
  • [2] Multi-task Self-Supervised Visual Learning
    Doersch, Carl
    Zisserman, Andrew
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2070 - 2079
  • [3] DialogueBERT: A Self-Supervised Learning based Dialogue Pre-training Encoder
    Zhang, Zhenyu
    Guo, Tao
    Chen, Meng
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3647 - 3651
  • [4] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [5] Multi-task Self-Supervised Adaptation for Reinforcement Learning
    Wu, Keyu
    Chen, Zhenghua
    Wu, Min
    Xiang, Shili
    Jin, Ruibing
    Zhang, Le
    Li, Xiaoli
    [J]. 2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 15 - 20
  • [6] Multi-Task Self-Supervised Learning for Disfluency Detection
    Wang, Shaolei
    Che, Wanxiang
    Liu, Qi
    Qin, Pengda
    Liu, Ting
    Wang, William Yang
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9193 - 9200
  • [7] ProSE-Pero: Peroxisomal Protein Localization Identification Model Based on Self-Supervised Multi-Task Language Pre-Training Model
    Sui, Jianan
    Chen, Jiazi
    Chen, Yuehui
    Iwamori, Naoki
    Sun, Jin
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (12):
  • [8] Dense Contrastive Learning for Self-Supervised Visual Pre-Training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    Li, Lei
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3023 - 3032
  • [9] A Single-Channel Sleep Staging Method Based on Self-Supervised Learning
    Gao, Wei
    Hu, Zhengqing
    Liu, Yanqing
    Qiu, Fangbing
    Han, Lin
    [J]. PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 310 - 314
  • [10] Self-supervised Pre-training with Acoustic Configurations for Replay Spoofing Detection
    Shim, Hye-jin
    Heo, Hee-Soo
    Jung, Jee-weon
    Yu, Ha-Jin
    [J]. INTERSPEECH 2020, 2020, : 1091 - 1095