Toward symmetric spaces of affine Kac-Moody type

被引:10
|
作者
Heintze, Ernst [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
关键词
symmetric spaces; affine Kac-Moody algebras and groups; involutions; polar and hyperpolar actions; isoparametric submanifolds;
D O I
10.1142/S0219887806001648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this expository article we discuss some ideas and results which might lead to a theory of infinite dimensional symmetric spaces (G) over cap/(K) over cap where (G) over cap is an affine Kac-Moody group and (K) over cap the fixed point group of an involution (of the second kind). We point out several striking similarities of these spaces with their finite dimensional counterparts and discuss their geometry. Furthermore we sketch a classification and show that they are essentially in 1: 1 correspondence with hyperpolar actions on compact simple Lie groups.
引用
收藏
页码:881 / 898
页数:18
相关论文
共 50 条
  • [31] Regular representation of affine Kac-Moody algebras
    Feigin, B
    Parkhomenko, S
    ALGEBRAIC AND GEOMETRIC METHODS IN MATHEMATICAL PHYSICS, 1996, 19 : 415 - 424
  • [32] Graded subalgebras of affine Kac-Moody algebras
    Y. Barnea
    A. Shalev
    E. I. Zelmanov
    Israel Journal of Mathematics, 1998, 104 : 321 - 334
  • [33] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin Chen
    Ya-nan Lin
    Science in China Series A: Mathematics, 2007, 50 : 521 - 532
  • [34] A characterization of affine Kac-Moody lie algebras
    Allison, BN
    Berman, S
    Gao, Y
    Pianzola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) : 671 - 688
  • [35] Singular elements of affine Kac-Moody groups
    Helmke, S
    Slodowy, P
    European Congress of Mathematics, 2005, : 155 - 172
  • [36] Gradings and contractions of affine Kac-Moody algebras
    Daboul, Claudia
    Daboul, Jamil
    de Montigny, Marc
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [37] Hall Algebras and Quantum Symmetric Pairs of Kac-Moody Type Ⅱ
    Ming LU
    Run Ze SHANG
    Acta Mathematica Sinica,English Series, 2024, (03) : 806 - 822
  • [38] Geometric realizations of affine Kac-Moody algebras
    Futorny, Vyacheslav
    Krizka, Libor
    Somberg, Petr
    JOURNAL OF ALGEBRA, 2019, 528 : 177 - 216
  • [39] New representations of affine Kac-Moody algebras
    Cai, Yan-An
    Tan, Haijun
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2020, 547 : 95 - 115
  • [40] A Characterization of Affine Kac-Moody Lie Algebras
    Bruce N. Allison
    Stephen Berman
    Yun Gao
    Arturo Pianzola
    Communications in Mathematical Physics, 1997, 185 : 671 - 688