Control Considerations for Very Large Floating Wind Turbines

被引:1
|
作者
dos Santos, Carlos Renan [1 ]
Abdelmoteleb, Serag-Eldin [2 ]
Mendoza, Alejandra S. Escalera [3 ]
Bachynski-Polic, Erin E. [2 ]
机构
[1] Inst Energy Technol, N-2007 Kjeller, Norway
[2] Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway
[3] Univ Texas Dallas, Richardson, TX 75080 USA
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 31期
关键词
Floating wind turbines; control design; large-scale wind turbine; floating platform; detuning approach;
D O I
10.1016/j.ifacol.2022.10.426
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Increasingly large floating wind turbines (FWTs) are being introduced to access the offshore wind resource over deep water at lower cost. In connection with designing a 25 MW semi-submersible wind turbine, we examine the scaling trends associated with the dynamic performance of the generator torque and blade pitch controllers and highlight the challenges that may be encountered for such devices. The increased rotor inertia, reduced blade pitch rates, longer platform pitch and surge natural periods, and flexible modes of the tower, platform, and rotor all affect the ability of the controller to track the desired rotor speed. The effects of control design and tuning choices on the FWT behavior in representative wind and wave conditions are shown. Copyright (C) 2022 The Authors.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [1] Control of floating wind turbines
    van der Veen, G. J.
    Couchman, I. J.
    Bowyer, R. O.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3148 - 3153
  • [2] LQG control for hydrodynamic compensation on large floating wind turbines
    Hawari, Qusay
    Kim, Taeseong
    Ward, Christopher
    Fleming, James
    [J]. RENEWABLE ENERGY, 2023, 205 (1-9) : 1 - 9
  • [3] HYDROELASTIC RESPONSE OF VERY LARGE FLOATING STRUCTURES (VLFS) CONNECTED WITH WIND TURBINES
    Naseema, Sibin Muhamed Basheer
    Saha, Nilanjan
    [J]. PROCEEDINGS OF THE ASME 36TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2017, VOL 6, 2017,
  • [4] Structural control of floating wind turbines
    Lackner, Matthew A.
    Rotea, Mario A.
    [J]. MECHATRONICS, 2011, 21 (04) : 704 - 719
  • [5] Hybrid vibration control of floating wind turbines
    Jin, Xin
    Lin, Yifan
    Xie, Shuangyi
    He, Jiao
    Wang, Ning
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (11): : 261 - 266
  • [6] ACTUATOR SATURATION CONTROL OF FLOATING WIND TURBINES
    Ramos, Roberto
    [J]. PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 359 - 367
  • [7] A novel control architecture for floating wind turbines
    Hegazy, A.
    Naaijen, P.
    van Wingerden, J. W.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 7644 - 7649
  • [8] Modelling and control of floating offshore wind turbines
    Tomas-Rodriguez, M.
    Santos, M.
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2019, 16 (04): : 381 - 390
  • [9] floating WIND turbines
    Roddier, Dominique
    Weinstein, Joshua
    [J]. MECHANICAL ENGINEERING, 2010, 132 (04) : 28 - 32
  • [10] Fatigue analysis of mooring systems in large wave height for floating offshore wind turbines and dlc considerations
    Saito, Masakatsu
    [J]. Proceedings of the International Offshore and Polar Engineering Conference, 2021, : 608 - 614