Modelling and control of floating offshore wind turbines

被引:38
|
作者
Tomas-Rodriguez, M. [1 ]
Santos, M. [2 ]
机构
[1] City Univ London, Sch Math Comp Sci & Engn, Northampton Sq, London EC1V 0HB, England
[2] Univ Complutense Madrid, Dept Arquitectura Computadores & Automat, C Jose Garcia Santesmases 9, E-28040 Madrid, Spain
关键词
Modelling; Control; Wind turbine; Floating Offshore wind turbines; wind marine energy; renewable energy; TUNED MASS DAMPER;
D O I
10.4995/riai.2019.11648
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This tutorial deals with the modeling and control of floating marine wind turbines. First, these offshore wind energy systems, located on the high seas, in deep waters are described; some modeling approaches are discussed. The power control of these turbines is presented in detail, explaining the different types of control that seek to maximize the energy. The issue of unstable dynamics that can appear in the floating platform due to the wind turbine rotor control is highlighted, something that other types of offshore and onshore turbines do not share. An example shows the reduction of vibrations by applying structural control strategies; results prove that a passive device that is complemented with a mechanism called inerter eliminates the oscillations of the floating turbine. The example here presented represents some preliminary results of the ongoing current research of the authors.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 50 条
  • [1] A review of modelling techniques for floating offshore wind turbines
    Otter, Aldert
    Murphy, Jimmy
    Pakrashi, Vikram
    Robertson, Amy
    Desmond, Cian
    WIND ENERGY, 2022, 25 (05) : 831 - 857
  • [2] Floating offshore wind turbines
    Sclavounos, Paul
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [3] Evaluation of control methods for floating offshore wind turbines
    Yu, Wei
    Lemmer, Frank
    Schlipf, David
    Cheng, Po Wen
    Visser, Bart
    Links, Harmen
    Gupta, Neelabh
    Dankemann, Sabrina
    Counago, Bernardino
    Serna, Jose
    EERA DEEPWIND'2018, 15TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2018, 1104
  • [4] Review of control technologies for floating offshore wind turbines
    Lopez-Queija, Javier
    Robles, Eider
    Jugo, Josu
    Alonso-Quesada, Santiago
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [5] Nonlinear modelling of shared mooring concepts for floating offshore wind turbines
    Pan, Qi
    Guo, Feng
    Luedecke, Fiona D.
    EERA DEEPWIND CONFERENCE 2023, 2023, 2626
  • [6] Modelling of Synthetic Fibre Rope Mooring for Floating Offshore Wind Turbines
    Sorum, Stian H.
    Fonseca, Nuno
    Kent, Michael
    Faria, Rui Pedro
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (01)
  • [7] Individual blade pitch control of floating offshore wind turbines
    Namik, H.
    Stol, K.
    WIND ENERGY, 2010, 13 (01) : 74 - 85
  • [8] MODEL FREE ADAPTIVE CONTROL FOR FLOATING OFFSHORE WIND TURBINES
    Qi L.
    Shi K.
    Guo N.
    Li B.
    Zhang Z.
    Xu J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 384 - 390
  • [9] A review of numerical modelling and optimisation of the floating support structure for offshore wind turbines
    Faraggiana, Emilio
    Giorgi, Giuseppe
    Sirigu, Massimo
    Ghigo, Alberto
    Bracco, Giovanni
    Mattiazzo, Giuliana
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2022, 8 (03) : 433 - 456
  • [10] A review of numerical modelling and optimisation of the floating support structure for offshore wind turbines
    Emilio Faraggiana
    Giuseppe Giorgi
    Massimo Sirigu
    Alberto Ghigo
    Giovanni Bracco
    Giuliana Mattiazzo
    Journal of Ocean Engineering and Marine Energy, 2022, 8 : 433 - 456