共 50 条
- [41] ANOMALY DETECTION FOR HYPERSPECTRAL IMAGES USING LOCAL TANGENT SPACE ALIGNMENT [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 824 - 827
- [42] LOCAL-GLOBAL BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 368 - 371
- [44] Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31 : 753 - 762
- [45] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters [J]. The Journal of Supercomputing, 2011, 58 : 411 - 419
- [46] NON-GAUSSIAN BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1125 - 1129
- [47] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
- [48] Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images [J]. EURASIP Journal on Advances in Signal Processing, 2010
- [49] RX architectures for real-time anomaly detection in hyperspectral images [J]. Journal of Real-Time Image Processing, 2014, 9 : 503 - 517
- [50] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters [J]. JOURNAL OF SUPERCOMPUTING, 2011, 58 (03): : 411 - 419