Embedded GPU implementation of Anomaly detection for hyperspectral images

被引:8
|
作者
Wu, Yuanfeng [1 ]
Gao, Lianru [1 ]
Zhang, Bing [1 ]
Yang, Bin [1 ,2 ]
Chen, Zhengchao [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
关键词
hyperspectral imaging; anomaly detection; graphics processing units (GPUs); low power consumption; high-performance computing; embedded applications;
D O I
10.1117/12.2195460
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection is one of the most important techniques for remotely sensed hyperspectral data interpretation. Developing fast processing techniques for anomaly detection has received considerable attention in recent years, especially in analysis scenarios with real-time constraints. In this paper, we develop an embedded graphics processing units based parallel computation for streaming background statistics anomaly detection algorithm. The streaming background statistics method can simulate real-time anomaly detection, which refer to that the processing can be performed at the same time as the data are collected. The algorithm is implemented on NVIDIA Jetson TK1 development kit. The experiment, conducted with real hyperspectral data, indicate the effectiveness of the proposed implementations. This work shows the embedded GPU gives a promising solution for high-performance with low power consumption hyperspectral image applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ANOMALY DETECTION FOR HYPERSPECTRAL IMAGES USING LOCAL TANGENT SPACE ALIGNMENT
    Ma, Li
    Crawford, Melba M.
    Tian, Jinwen
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 824 - 827
  • [42] LOCAL-GLOBAL BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Madar, Eyal
    Kuybeda, Oleg
    Malah, David
    Barzohar, Meir
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 368 - 371
  • [43] Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images
    Paz, Abel
    Plaza, Antonio
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
  • [44] Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding
    Li Ma
    Melba M. Crawford
    Jinwen Tian
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31 : 753 - 762
  • [45] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    J. M. Molero
    A. Paz
    E. M. Garzón
    J. A. Martínez
    A. Plaza
    I. García
    [J]. The Journal of Supercomputing, 2011, 58 : 411 - 419
  • [46] NON-GAUSSIAN BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Madar, Eyal
    Malah, David
    Barzohar, Meir
    [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1125 - 1129
  • [47] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [48] Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images
    Abel Paz
    Antonio Plaza
    [J]. EURASIP Journal on Advances in Signal Processing, 2010
  • [49] RX architectures for real-time anomaly detection in hyperspectral images
    A. Rossi
    N. Acito
    M. Diani
    G. Corsini
    [J]. Journal of Real-Time Image Processing, 2014, 9 : 503 - 517
  • [50] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    Molero, J. M.
    Paz, A.
    Garzon, E. M.
    Martinez, J. A.
    Plaza, A.
    Garcia, I.
    [J]. JOURNAL OF SUPERCOMPUTING, 2011, 58 (03): : 411 - 419