B-SPLINE INTERPOLATION PROBLEM IN HILBERT C* -MODULES

被引:0
|
作者
Eskandari, Rasoul [1 ]
Frank, Michael [2 ]
Manuilov, Vladimir M. [3 ,4 ]
Moslehian, Mohammad Sal [5 ]
机构
[1] Farhangian Univ, Fac Sci, Dept Math, Tehran, Iran
[2] Hsch Tech Wirtschaft & Kultur HTWK Leipzig, Fak Informat & Med, PF 301166, D-04251 Leipzig, Germany
[3] Moscow MV Lomonosov State Univ, Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[4] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
[5] Ferdowsi Univ Mashhad, Dept Pure Math, Ctr Excellence Anal Algebra Struct CEAAS, POB 1159, Mashhad 91775, Razavi Khorasan, Iran
关键词
B-Spline interpolation problem; Hilbert C*-module; self-duality; orthogonal; complement;
D O I
10.7900/jot.2020apr17.2281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the B-spline interpolation problem corresponding to a C* -valued sesquilinear form on a Hilbert C* -module and study its basic properties as well as the uniqueness of solution. We first study the problem in the case when the Hilbert C*-module is self-dual. Passing to the setting of Hilbert W*-modules, we present our main result by characterizing when the spline interpolation problem for the extended C*-valued sesquilinear form has a solution. Finally, solutions of the B-spline interpolation problem for Hilbert C* -modules over C* -ideals of W * -algebras are extensively discussed.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 50 条
  • [1] The B-spline interpolation in visualization
    Mihajlović, Željka
    Goluban, Alan
    Journal of Computing and Information Technology, 1999, 7 (03): : 245 - 253
  • [2] As-developable-as-possible B-spline surface interpolation to B-spline curves
    Bo, Pengbo
    Zheng, Yujian
    Chu, Dianhui
    Zhang, Caiming
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79
  • [3] Interpolation by Nonuniform B-Spline through Uniform B-Spline Filter Banks
    Yang, Yanli
    Ma, De
    Yu, Ting
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 375 - 378
  • [4] The Hilbert Transform of B-Spline Wavelets
    Yu, Bo
    Yang, Xiuzhu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 693 - 697
  • [5] INVERSED RATIONAL B-SPLINE FOR INTERPOLATION
    TAN, ST
    LEE, CK
    COMPUTERS & STRUCTURES, 1992, 43 (05) : 889 - 895
  • [6] Cubic B-Spline Interpolation and Realization
    Wang, Zhijiang
    Wang, Kaili
    An, Shujiang
    INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 82 - 89
  • [7] INTERPOLATION WITH HYBRID B-SPLINE SURFACES
    WALKER, M
    COMPUTERS & GRAPHICS, 1994, 18 (04) : 525 - 530
  • [8] MODIFIED CUBIC B-SPLINE INTERPOLATION
    HSI, P
    LEE, CH
    PROCEEDINGS OF THE IEEE, 1981, 69 (12) : 1590 - 1592
  • [9] Quadratic B-spline curve interpolation
    Cheng, FH
    Wang, XF
    Barsky, BA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (1-2) : 39 - 50
  • [10] Enhanced B-spline interpolation of images
    Prades-Nebot, J
    Albiol, A
    Bachiller, C
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, 1998, : 289 - 293