We previously demonstrated that major membrane protein II (MMP-II) is one of the immunodominant antigens (Ags) of Mycobacterium leprae capable of activating T cells through Toll-like receptor 2. Based on the observation that Mycobacterium bovis BCG secreting a 30-kDa protein offered better protection against tuberculosis, we constructed a recombinant BCG strain (BCG-SM) that secretes MMP-II to improve the potency of BCG against leprosy. The secreted MMP-II protein from BCG-SM stimulated monocyte-derived dendritic cells (DC) to produce interieukin-12. DC infected with BCG-SM expressed MMP-II on their surfaces, and MMP-II expression was suppressed by the pretreatment of DC with chloroquine. These results indicated that secreted MMP-II was processed by DC for higher expression levels on their surfaces. In addition, BCG-SM phenotypically activated DC and induced higher expression levels of major histocompatibility complex, CD86, and CD83 Ags on DC than did vector control BCG (BCG-pMV). The DC infected with BCG-SM more efficiently stimulated naive and memory CD4(+) T cells and memory CD8(+) T cells to produce gamma interferon than did those infected with BCG-pMV. However, naive CD8(+) T cells were significantly activated only when they were stimulated with BCG-SM-infected DC. When CD8(+) T cells were cocultured with BCG-SM-infected DC, the proportion of perforin -producing T cells was significantly higher than that in cells cocultured with BCG-pMV-infected DC. Moreover, MMP-II-specific memory T cells were more efficiently produced in mice inoculated with BCG-SM than in mice inoculated with BCG-pW. Taken together, these results indicate that BCG capable of secreting the immunodominant Ag is more potent in the stimulation of T cells.