Comparing transformation methods for DNA microarray data

被引:9
|
作者
Thygesen, HH [1 ]
Zwinderman, AH [1 ]
机构
[1] Univ Amsterdam, Acad Med Centrum, NL-1100 DD Amsterdam, Netherlands
关键词
Reference Signal; Transformation Method; Variance Ratio; Baseline Shift; Simple Permutation;
D O I
10.1186/1471-2105-5-77
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing ( to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results: We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions: The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparing transformation methods for DNA microarray data
    Helene H Thygesen
    Aeilko H Zwinderman
    BMC Bioinformatics, 5
  • [2] Comparing transformation schemes for microarray data
    Thygesen, H
    Zwinderman, A
    CONTROLLED CLINICAL TRIALS, 2003, 24 : 53S - 53S
  • [3] Impact of DNA microarray data transformation on gene expression analysis - comparison of two normalization methods
    Schmidt, Marcin T.
    Handschuh, Luiza
    Zyprych, Joanna
    Szabelska, Alicja
    Olejnik-Schmidt, Agnieszka K.
    Siatkowski, Idzi
    Figlerowicz, Marek
    ACTA BIOCHIMICA POLONICA, 2011, 58 (04) : 573 - 580
  • [4] An evaluation of statistical methods for DNA methylation microarray data analysis
    Dongmei Li
    Zidian Xie
    Marc Le Pape
    Timothy Dye
    BMC Bioinformatics, 16 (1)
  • [5] An evaluation of statistical methods for DNA methylation microarray data analysis
    Li, Dongmei
    Xie, Zidian
    Le Pape, Marc
    Dye, Timothy
    BMC BIOINFORMATICS, 2015, 16
  • [6] Comparing bacterial DNA microarray fingerprints
    Willse, Alan
    Chandler, Darrell P.
    White, Amanda
    Protic, Miroslava
    Daly, Don S.
    Wunschel, Sharon
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2005, 4
  • [7] Toward a universal standard: Comparing two methods for standardizing spotted microarray data
    Weil, MR
    Macatee, T
    Garner, HR
    BIOTECHNIQUES, 2002, 32 (06) : 1310 - 1314
  • [8] Microarray standard data set and figures of merit for comparing data processing methods and experiment designs
    He, YDD
    Dai, HY
    Schadt, EE
    Cavet, G
    Edwards, SW
    Stepaniants, SB
    Duenwald, S
    Kleinhanz, R
    Jones, AR
    Shoemaker, DD
    Stoughton, RB
    BIOINFORMATICS, 2003, 19 (08) : 956 - 965
  • [9] Microarray data normalization and transformation
    John Quackenbush
    Nature Genetics, 2002, 32 : 496 - 501
  • [10] Microarray data normalization and transformation
    Quackenbush, J
    NATURE GENETICS, 2002, 32 (Suppl 4) : 496 - 501