Combinatorial Nitrogen Gradients in Sputtered Thin Film

被引:13
|
作者
Han, Yanbing [1 ,2 ]
Matthews, Bethany [2 ,3 ]
Roberts, Dennice [2 ,4 ]
Talley, Kevin R. [2 ,5 ]
Bauers, Sage R. [2 ]
Perkins, Craig [2 ]
Zhang, Qun [1 ]
Zakutayev, Andriy [2 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Natl Renewable Energy Lab, Mat Sci Ctr, Golden, CO 80401 USA
[3] Oregon State Univ, Dept Phys, Corvallis, OR 97330 USA
[4] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[5] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
physical vapor deposition; high-throughput experiments; spatially resolved characterization; thin film; combinatorial sputtering; DEPOSITION; NITRIDE; GROWTH; LAYER;
D O I
10.1021/acscombsci.8b00035
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
High-throughput synthesis and characterization methods can significantly accelerate the rate of experimental research. For physical vapor deposition (PVD), these methods include combinatorial sputtering with intentional gradients of metal/metalloid composition, temperature, and thickness across the substrate. However, many other synthesis parameters still remain out of reach for combinatorial methods. Here, we extend combinatorial sputtering parameters to include gradients of gaseous elements in thin films. Specifically, a nitrogen gradient was generated in a thin film sample library by placing two MnTe sputtering sources with different gas flows (Ar and Ar/N-2) opposite of one another during the synthesis. The nitrogen content gradient was measured along the sample surface, correlating with the distance from the nitrogen source. The phase, composition, and optoelectronic properties of the resulting thin films change as a function of the nitrogen content. This work shows that gradients of gaseous elements can be generated in thin films synthesized by sputtering, expanding the boundaries of combinatorial science.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 50 条
  • [21] SPUTTERED FERROELECTRIC THIN-FILM ELECTROOPTIC MODULATOR
    RUSSO, DPG
    KUMAR, CS
    APPLIED PHYSICS LETTERS, 1973, 23 (05) : 229 - 231
  • [22] Angular distribution of hybridization in sputtered carbon thin film
    Liu, Y.
    Wang, H.
    Wei, Z. C.
    AIP ADVANCES, 2017, 7 (08)
  • [23] SPUTTERED THIN-FILM SYSTEM FOR HYBRIDS AND SENSORS
    GRUNER, H
    THIN SOLID FILMS, 1982, 90 (04) : 373 - 377
  • [24] CONICR/CR SPUTTERED THIN-FILM DISKS
    YAMADA, T
    TANI, N
    ISHIKAWA, M
    OTA, Y
    NAKAMURA, K
    ITOH, A
    IEEE TRANSACTIONS ON MAGNETICS, 1985, 21 (05) : 1429 - 1431
  • [25] Blistering of magnetron sputtered thin film CdTe devices
    Kaminski, P. M.
    Yilmaz, S.
    Abbas, A.
    Bittau, F.
    Bowers, J. W.
    Greenhalgh, R. C.
    Walls, J. M.
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 3430 - 3434
  • [26] THIN FILM DIELECTRIC PROPERTIES OF RF SPUTTERED OXIDES
    PRATT, IH
    PROCEEDINGS ELECTRONIC COMPONENTS CONFERENCE, 1969, : 335 - &
  • [27] Substrate Temperature Dependence on Sputtered Titania Thin Film
    Aznilinda, Z.
    Herman, S. H.
    Raudah, A. B.
    Abdullah, W. F. H.
    Rusop, M.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MATERIALS (ICOSM 2013), 2013, 795 : 294 - 298
  • [28] Magnetron sputtered NbN thin film electrodes for supercapacitors
    Shen, Hao
    Wei, Binbin
    Zhang, Dongfang
    Qi, Zhengbing
    Wang, Zhoucheng
    MATERIALS LETTERS, 2018, 229 : 17 - 20
  • [29] Oxidation of sputtered Zr thin film on Si substrate
    Kurniawan, Tedi
    Cheong, Kuan Yew
    Razak, Khairunisak Abdul
    Lockman, Zainovia
    Ahmad, Nuruddin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (02) : 143 - 150
  • [30] SPUTTERED THIN FILM SUPERCONDUCTOR SEMICONDUCTOR TUNNEL JUNCTIONS
    KELLER, WH
    NORDMAN, JE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 842 - &