Singularity of full scaling limits of planar nearcritical percolation

被引:3
|
作者
Aumann, Simon [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Nearcritical; Percolation; Full scaling limit; Singular; NEAR-CRITICAL PERCOLATION;
D O I
10.1016/j.spa.2014.07.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider full scaling limits of planar nearcritical percolation in the Quad-Crossing-Topology introduced by Schramm and Smirnov. We show that two nearcritical scaling limits with different parameters are singular with respect to each other. The results hold for percolation models on rather general lattices, including bond percolation on the square lattice and site percolation on the triangular lattice. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:3807 / 3818
页数:12
相关论文
共 50 条
  • [21] On scaling limits of planar maps with stable face-degrees
    Marzouk, Cyril
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1089 - 1122
  • [22] SCALING LIMITS OF RANDOM PLANAR MAPS WITH A UNIQUE LARGE FACE
    Janson, Svante
    Stefansson, Sigurdur Orn
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1045 - 1081
  • [23] ESSENTIAL SINGULARITY IN PERCOLATION MODEL
    KUNZ, H
    SOUILLARD, B
    PHYSICAL REVIEW LETTERS, 1978, 40 (03) : 133 - 135
  • [24] Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals
    Hsu, HP
    Huang, MC
    PHYSICAL REVIEW E, 1999, 60 (06): : 6361 - 6370
  • [25] Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits
    Smirnov, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 239 - 244
  • [26] LIOUVILLE FIRST-PASSAGE PERCOLATION: SUBSEQUENTIAL SCALING LIMITS AT HIGH TEMPERATURE
    Ding, Jian
    Dunlap, Alexander
    ANNALS OF PROBABILITY, 2019, 47 (02): : 690 - 742
  • [27] Two Directed Non-planar Random Networks and Their Scaling Limits
    Azadeh Parvaneh
    Rahul Roy
    Journal of Statistical Physics, 190
  • [28] Scaling limits of random bipartite planar maps with a prescribed degree sequence
    Marzouk, Cyril
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (03) : 448 - 503
  • [29] Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere
    Jean-François Le Gall
    Frédéric Paulin
    Geometric and Functional Analysis, 2008, 18 : 893 - 918
  • [30] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere
    Le Gall, Jean-Francois
    Paulin, Frederic
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (03) : 893 - 918