Limit cycle bifurcations in a class of perturbed piecewise smooth systems

被引:21
|
作者
Xiong, Yanqin [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Piecewise perturbed Hamiltonian system; Hopf bifurcation; Generalized homoclinic loop; Phase portrait;
D O I
10.1016/j.amc.2014.05.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we concern with the number of limit cycles in a piecewise polynomial system. First, we give 42 different phase portraits of the unperturbed system with at least one closed orbit. Then, we perturb one phase portrait of them by piecewise polynomials, and consider lower bounds for the maximal numbers of limit cycles emerging from the origin and generalized homoclinic loop, respectively. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 50 条
  • [41] Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters
    Han, Maoan
    Xiong, Yanqin
    [J]. Chaos, Solitons and Fractals, 2014, 68 : 20 - 29
  • [42] Center Problems and Limit Cycle Bifurcations in a Class of Quasi-Homogeneous Systems
    Xiong, Yanqin
    Han, Maoan
    Wang, Yong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [43] Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters
    Shuhua Gong
    Maoan Han
    [J]. Advances in Difference Equations, 2020
  • [44] Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters
    Gong, Shuhua
    Han, Maoan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [45] Limit cycle bifurcations of some Lienard systems
    Yang, Junmin
    Han, Maoan
    Romanovski, Valery G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 242 - 255
  • [46] LIMIT CYCLE BIFURCATIONS BY PERTURBING PIECEWISE HAMILTONIAN SYSTEMS WITH A NONREGULAR SWITCHING LINE VIA MULTIPLE PARAMETERS
    Chang, Yuan
    Bai, Yuzhen
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 3071 - 3088
  • [47] Bifurcations of a limit cycle in nonlinear dynamic systems
    Nikitina N.V.
    [J]. International Applied Mechanics, 2009, 45 (09) : 1023 - 1032
  • [48] On Double Boundary Equilibrium Bifurcations in Piecewise Smooth Planar Systems
    Pagano, Daniel J.
    Ponce, Enrique
    Torres, Francisco
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2011, 10 (02) : 277 - 301
  • [49] On Double Boundary Equilibrium Bifurcations in Piecewise Smooth Planar Systems
    Daniel J. Pagano
    Enrique Ponce
    Francisco Torres
    [J]. Qualitative Theory of Dynamical Systems, 2011, 10 : 277 - 301
  • [50] Lyapunov Coefficients for Hopf Bifurcations in Systems with Piecewise Smooth Nonlinlearity
    Zazo, Miriam Steinherr
    Rademacher, Jens D. M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2847 - 2886