On the existence and uniqueness of a solution for second or third grade fluids

被引:7
|
作者
Bresch, D
Lemoine, J
机构
关键词
D O I
10.1016/S0764-4442(99)80398-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the nonstationary case for the third grade fluids and in the stationary case for the second grade fluids, we present some existence and uniqueness results. We obtain the results in L-r, where r > 3 is a real number for open sets of class only C-2. The proof is Based on a fixed point method By introducing a new uncoupled system.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [41] Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation
    A. I. Kozhanov
    V. V. Shubin
    [J]. Siberian Mathematical Journal, 2022, 63 : 723 - 734
  • [42] EXISTENCE AND UNIQUENESS OF SOLUTION OF NONSTATIONARY BOLTZMANN'S MOMENT SYSTEM EQUATIONS IN THIRD APPROXIMATION
    Sakabekov, A.
    Auzhani, E.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 36 - 42
  • [43] Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations
    Jian Zu
    [J]. Boundary Value Problems, 2011
  • [44] Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations
    Chen, Lijuan
    Lu, Shiping
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [45] Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations
    Zu, Jian
    [J]. BOUNDARY VALUE PROBLEMS, 2011,
  • [46] EXISTENCE AND UNIQUENESS OR SOLUTION TO BOLTZMANNS EQUATION
    FILIPPOV, BV
    ILINSKAY.GB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (04): : 768 - &
  • [47] On the Existence and Uniqueness of Solution of MRE and Applications
    Yunhui Hou
    Nikolaos Limnios
    Walter Schön
    [J]. Methodology and Computing in Applied Probability, 2017, 19 : 1241 - 1250
  • [48] The existence and uniqueness of solution to wavelet collocation
    Qin, Xinqiang
    Fang, Baoyan
    Tian, Shuangliang
    Tong, Xiaohong
    Wang, Zhigang
    Su, Lijun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 231 : 63 - 72
  • [49] Existence and uniqueness of a solution to an aeroacoustic model
    Destuynder, P
    D'Henin, EG
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (01) : 11 - 24
  • [50] ON EXISTENCE AND UNIQUENESS OF SOLUTION IN THEORY OF VISCOELASTICITY
    BABUSKA, I
    HLAVACEK, I
    [J]. ARCHIWUM MECHANIKI STOSOWANEJ, 1966, 18 (01): : 47 - &