Single-image shadow removal using detail extraction and illumination estimation

被引:8
|
作者
Wu, Wen [1 ]
Wu, Xiantao [2 ]
Wan, Yi [3 ]
机构
[1] Xinjiang Inst Technol, Sch Informat Engn, Aksu 843100, Peoples R China
[2] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi 830046, Peoples R China
[3] Wenzhou Univ, Sch Elect & Elect Engn, Wenzhou 325035, Peoples R China
来源
VISUAL COMPUTER | 2022年 / 38卷 / 05期
关键词
Image processing; Shadow removal; Generative adversarial networks; Illumination estimation; Multi-scale decomposition;
D O I
10.1007/s00371-021-02096-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning-based shadow removal methods are frequently hard to obtain a detail-rich and boundary-smoothing shadow removal result. In this work, we propose an illumination-sensitive filter and a multi-task generative adversarial networks architecture to tackle these problems. Firstly, we detect the shadow for the input shadow image and use the illumination-sensitive filter to extract the texture information for generating a coarse image with fewer texture details. Secondly, we conduct illumination estimation for this coarse shadow image to remove the shadow indirectly. Next, we restore the shadow boundary realistically inspired by the idea of image in painting. Finally, we recover the texture details for obtaining the final shadow removal result. Besides, we filter two large benchmark datasets, i.e., SRD and ISTD, to create a Low Error Synthesized Dataset (LESD). The extensive experiments demonstrate that our method can achieve superior performance to state of the arts.
引用
收藏
页码:1677 / 1687
页数:11
相关论文
共 50 条
  • [41] Stacked dense networks for single-image snow removal
    Li, Pengyue
    Yun, Mengshen
    Tian, Jiandong
    Tang, Yandong
    Wang, Guolin
    Wu, Chengdong A.
    [J]. NEUROCOMPUTING, 2019, 367 : 152 - 163
  • [42] Single-image SVBRDF estimation with auto-adaptive high-frequency feature extraction
    Cheng, Jiamin
    Wang, Li
    Zhang, Lianghao
    Gao, Fangzhou
    Zhang, Jiawan
    [J]. Computers and Graphics (Pergamon), 2024, 124
  • [43] Single-Image Noise Level Estimation for Blind Denoising
    Liu, Xinhao
    Tanaka, Masayuki
    Okutomi, Masatoshi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) : 5226 - 5237
  • [44] Single-Image SVBRDF Estimation with Learned Gradient Descent
    Luo, X.
    Scandolo, L.
    Bousseau, A.
    Eisemann, E.
    [J]. COMPUTER GRAPHICS FORUM, 2024, 43 (02)
  • [45] Single-image signal-to-noise ratio estimation
    Thong, JTL
    Sim, KS
    Phang, JCH
    [J]. SCANNING, 2001, 23 (05) : 328 - 336
  • [46] Adversarial Single-Image SVBRDF Estimation with Hybrid Training
    Zhou, Xilong
    Kalantari, Nima Khademi
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (02) : 315 - 325
  • [47] Shadow Removal from Single Image Using Color Invariant Method
    Krishnan, Aiswarya
    Jayadevan, Poojitha
    Panicker, Vinitha J.
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 583 - 587
  • [48] Research on a single image shadow removal method
    Li, Jianxun
    Tong, Zhongxiang
    Liu, Yan
    Li, Cheng
    Wang, Chaozhe
    Zhang, Zhibo
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2013, 34 (05): : 628 - 634
  • [49] Shadow removal based on single outdoor image
    Liu, Yan-Li
    Shi, Jun
    Zhang, Yan-Ci
    [J]. Ruan Jian Xue Bao/Journal of Software, 2012, 23 (SUPPL.2): : 168 - 175
  • [50] Appearance Harmonization for Single Image Shadow Removal
    Ma, Li-Qian
    Wang, Jue
    Shechtman, Eli
    Sunkavalli, Kalyan
    Hu, Shi-Min
    [J]. COMPUTER GRAPHICS FORUM, 2016, 35 (07) : 189 - 197