High accuracy fundamental matrix computation and its performance evaluation

被引:5
|
作者
Kanatani, Kenichi [1 ]
Sugaya, Yasuyuki
机构
[1] Okayama Univ, Dept Comp Sci, Okayama 7008530, Japan
[2] Toyohashi Univ Technol, Dept Informat & Comp Sci, Toyohashi, Aichi 4418580, Japan
关键词
fundamental matrix; geometric fitting; KCR lower bound; maximum likelihood; convergence performance;
D O I
10.1093/ietisy/e90-d.2.579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We compare the convergence performance of different numerical schemes for computing the fundamental matrix from point correspondences over two images. First, we state the problem and the associated KCR lower bound. Then, we describe the algorithms of three well-known methods: FNS, HEIV, and renormalization. We also introduce Gauss-Newton iterations as a new method for fundamental matrix computation. For initial values, we test random choice, least squares, and Taubin's method. Experiments using simulated and real images reveal different characteristics of each method. Overall, FNS exhibits the best convergence properties.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 50 条
  • [1] Highest accuracy fundamental matrix computation
    Sugaya, Yasuyuki
    Kanatani, Kenichi
    [J]. COMPUTER VISION - ACCV 2007, PT II, PROCEEDINGS, 2007, 4844 : 311 - +
  • [2] Linear algorithm with high accuracy for estimating fundamental matrix
    Chen, Ze-Zhi
    Wu, Cheng-Ke
    [J]. Ruan Jian Xue Bao/Journal of Software, 2002, 13 (04): : 840 - 845
  • [3] A high-accuracy algorithm for computing fundamental matrix
    Sun, YN
    Liu, WJ
    Ma, YZ
    Wang, YC
    [J]. IEEE ROBIO 2004: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, 2004, : 733 - 736
  • [4] Neural computation of the fundamental matrix
    Cyganek, B
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 718 - 723
  • [5] Compact Fundamental Matrix Computation
    Kanatani, Kenichi
    Sugaya, Yasuyuki
    [J]. ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2009, 5414 : 179 - +
  • [6] Fundamental matrix from optical flow: optimal computation and reliability evaluation
    Kanatani, K
    Shimizu, Y
    Ohta, N
    Brooks, MJ
    Chojnacki, W
    van den Hengel, A
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2000, 9 (02) : 194 - 202
  • [7] DISCRETIZATION EFFECTS IN THE FUNDAMENTAL MATRIX COMPUTATION
    Guerra-Filho, Gutemberg
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 3025 - 3028
  • [8] An improved method for computation of fundamental matrix
    Chen, Jing
    Luo, Shuqian
    [J]. 2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 151 - 156
  • [9] Stable computation with the fundamental matrix of a Markov chain
    Barlow, JL
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (01) : 230 - 241
  • [10] Singular Vector Methods for Fundamental Matrix Computation
    Espuny, Ferran
    Monasse, Pascal
    [J]. IMAGE AND VIDEO TECHNOLOGY, PSIVT 2013, 2014, 8333 : 290 - 301