Adaptive Doppler analysis for robust handheld optical coherence elastography

被引:0
|
作者
Zaki, Farzana [1 ]
Wang, Yahui [1 ]
Wang, Chizhong [1 ]
Liu, Xuan [1 ]
机构
[1] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
基金
美国国家卫生研究院;
关键词
Optical coherence tomography; Optical sensing and sensors; Tissue characterization; Doppler; Optical coherence elastography; TISSUE;
D O I
10.1117/12.2503809
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Optical coherence tomography (OCT) allows structural and functional imaging of biological tissue with high resolution and high speed. Optical coherence elastography (OCE), a functional extension of OCT, has been used to perform mechanical characterization. A handheld fiber-optic OCE instrument allows high sensitivity virtual palpation of tissue with great convenience and flexibility and can be used in a wide range of clinical settings. Moreover, fiber-optic OCE instruments can be integrated into a needle device to access deep tissue. However, the major challenge in the development of handheld OCE instrument is non-constant motion within the tissue. In this study, a simple and effective method for temporally and spatially adaptive Doppler analysis is investigated. The adaptive Doppler analysis method strategically chooses the time interval (delta t) between signals involved in Doppler analysis, to track the motion speed v(z,t) that varies as time (t) and depth (z) in a deformed sample volume under manual compression. The aim is to use an optimal time interval to achieve a large yet artifact free Doppler phase shift for motion tracking.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Method for optical coherence elastography of the cornea
    Ford, Matthew R.
    Dupps, William J., Jr.
    Rollins, Andrew M.
    Roy, Abhijit Sinha
    Hu, Zhilin
    JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (01)
  • [22] Lorentz force optical coherence elastography
    Wu, Chen
    Singh, Manmohan
    Han, Zhaolong
    Raghunathan, Raksha
    Liu, Chih-Hao
    Li, Jiasong
    Schill, Alexander
    Larin, Kirill V.
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (09)
  • [23] Crawling wave optical coherence elastography
    Meemon, Panomsak
    Yao, Jianing
    Chu, Ying-Ju
    Zvietcovich, Fernando
    Parker, Kevin J.
    Rolland, Jannick P.
    OPTICS LETTERS, 2016, 41 (05) : 847 - 850
  • [24] Optical Doppler coherence tomography algorithms: Quantitative analysis
    Piao, DQ
    Zhu, Q
    Otis, L
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 293 - 296
  • [25] Noninvasive Quantitative Elastography of the Cornea and the Lens with Optical Coherence Elastography
    Larin, Kirill
    Twa, Michael D.
    Manns, Fabrice
    Aglyamov, Salavat
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [26] Adaptive incremental method for strain estimation in phase-sensitive optical coherence elastography
    Bai, Yulei
    Cai, Shuyin
    Xie, Shengli
    Dong, Bo
    OPTICS EXPRESS, 2021, 29 (16): : 25327 - 25336
  • [27] Endoscopic optical coherence tomography for a handheld laryngoscope
    Krueger, A.
    Donner, S.
    Bleeker, S.
    Ripken, T.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S518 - S518
  • [28] Design of a Handheld Optical Coherence Microscopy Endoscope
    Korde, Vrushali R.
    Liebmann, Erica
    Barton, Jennifer K.
    ENDOSCOPIC MICROSCOPY IV, 2009, 7172
  • [29] Design of a handheld optical coherence microscopy endoscope
    Korde, Vrushali R.
    Liebmann, Erica
    Barton, Jennifer K.
    JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (06)
  • [30] Analysis of surface roughness in optical coherence elastography using a novel phantom
    Sanderson, Rowan W.
    Caddy, Harrison T.
    Ismail, Hina M.
    Foo, Ken Y.
    Kelsey, Lachlan J.
    Lakhiani, Devina D.
    Gong, Peijun
    Yeomans, Chris
    Dessauvagie, Benjamin F.
    Saunders, Christobel M.
    Doyle, Barry J.
    Kennedy, Brendan F.
    OPTICS AND LASER TECHNOLOGY, 2024, 169